[ Downloaded from aisesjournal.com on 2026-02-04 ]

Aly..
Sustaira bia
{h-,F-, yEreray and

“T JErvronmernt
g (AISEE|

‘_

Al in Sustainable Energy and Environment (AISES)

Al in Sustainable Energy and Environment
Vol 1, No. 1, 2025
81-107

Journal homepage:

Western European energy-related CO2 emissions; Integrating data
1990-2020 with cutting-edge swarm intelligence approaches

Serikzhan Opakhai

Institute of Physics and Technical science, L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan

Article Info

Abstract

Received 30 May 2025

Received in Revised form 15 June
2025

Accepted 28 June 2025
Published online 22 July 2025

DOI: ...

Keywords

CO2 emission
artificial intelligence
metaheuristic algorithm

Western Europe

This study aims to provide valuable insights into future emission trends by utilizing
advanced predictive modeling techniques. With global energy consumption
continuing to rise, understanding and forecasting carbon dioxide (CO2) emissions
from energy sources is crucial for policymakers to design effective mitigation
measures and transition towards sustainable energy systems. Predicting energy-
related CO2 emissions is vital for informing evidence-based environmental policies
and strategies to combat climate change. This project investigates the prediction of
energy-related carbon dioxide emissions in Western Europe by merging a neural
network with three nature-inspired optimization algorithms: Multiverse Optimization
(MVO), League Championship Algorithm (LCA), and Evaporation Rate Water Cycle
Algorithm (ERWCA). We assess how much this combined approach improves
prediction accuracy using a relevant dataset. Our findings demonstrate that the
ensemble model works better than alternative methods and has increased accuracy in
estimating carbon dioxide emissions, as evaluated by R-squared (R2) and Root Mean
Square Error (RMSE). This research provides helpful information for developing
sustainability initiatives and regulations by highlighting the advantages of utilizing
various optimization techniques in predictive modeling for environmental
applications. The accuracy of the MLP is improved by applying the MVO, LCA, and
ERWCA algorithms. It was demonstrated that some hybrid techniques can yield more
precise predictions than those derived from the conventional MLP ranking.
Subsequent analysis revealed that ERWCA outperforms the other algorithms. Using
R2 = 0.9977 and 0.9919, RMSE 17.9936 and 30.1394 for ERWCA, R2 = 0.9962 and
0.9898, RMSE 23.3505 and 33.8724 for MVO, and R2 = 0.9898 and 0.9793, RMSE
38.2511 and 48.1272 for LCA, the CO2 emission was estimated with the highest
degree of accuracy.

1. Introduction

For several reasons, predicting carbon dioxide
(CO,) emissions is crucial in the context of
climate change and environmental sustainability.
CO, is a significant greenhouse gas responsible
for trapping heat in the Earth's atmosphere,
leading to global warming and climate change [1].
By accurately predicting CO, emissions, we can
better understand and anticipate the impact of
human activities on the climate system. This
information is essential for implementing
effective mitigation strategies to limit the rise in
global temperatures and minimize the adverse
effects of climate change. Predictive models of
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CO, emissions provide valuable insights for
policymakers and decision-makers in developing
and implementing climate policies and regulations
[2]. These models help identify sectors and
activities that contribute most to CO, emissions,
enabling targeted interventions to reduce
emissions and  transition to  low-carbon
alternatives. Predicting CO, emissions is integral
to promoting sustainable development practices.
By forecasting future emissions trends,
policymakers, businesses, and communities can
make informed decisions about investments,
resource allocation, and infrastructure
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development [3, 4]. This facilitates the transition
towards a more sustainable and resilient economy
that balances environmental protection with
economic growth and social well-being. Accurate
prediction of CO, emissions allows for assessing
the environmental impact of various human
activities, such as energy  production,
transportation, and industrial processes [5, 6].
Understanding the relationship between CO,
emissions and environmental degradation helps
prioritize conservation efforts, protect ecosystems,
and preserve biodiversity. CO, emissions are a
global challenge that requires collaborative action
on an international scale. Predictive emissions
modeling provides a common framework for
countries to track progress toward emissions
reduction targets, share best practices, and engage
in climate negotiations [7]. By fostering global
cooperation, predictive modeling contributes to
collective efforts to address climate change and
achieve sustainable development goals [8].
Predicting CO, emissions plays a vital role in
understanding, mitigating, and adapting to climate
change, promoting environmental sustainability,
and advancing global efforts towards a more
resilient and equitable future.

In recent years, integrating neural networks and
optimization  algorithms has revolutionized
predictive modeling across various domains [9,
10]. Neural networks, inspired by the structure
and function of the human brain, have emerged as
powerful tools for processing complex data and
extracting meaningful patterns. Optimization
algorithms, on the other hand, provide efficient
methods for tuning the parameters of neural
networks to enhance their predictive performance
[11, 12]. Neural networks, often called artificial
neural networks (ANNSs), are computational
models composed of interconnected nodes, or
neurons, organized in layers [13]. Each neuron
receives input signals, processes them through an
activation function, and passes the output to
subsequent layers. Through a process known as
training, neural networks learn to adjust the
weights and biases of connections between
neurons to optimize their performance on a given
task, such as classification or regression. The
versatility of neural networks lies in their ability
to learn complex, nonlinear relationships from
data without requiring explicit programming [14].
This makes them well-suited for tasks involving
pattern recognition, time-series prediction, image
classification, and natural language processing.
Moreover, advancements in deep learning, which
involves training neural networks with multiple
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hidden layers, have led to breakthroughs in speech
recognition, autonomous vehicles, and healthcare
diagnostics [15]. Optimization algorithms are
crucial in training neural networks by iteratively
adjusting their parameters to minimize a
predefined loss function [16]. These algorithms
seek to find the optimal set of weights and biases
that minimize the difference between the
predicted outputs of the neural network and the
actual targets in the training data. Various
optimization algorithms have been developed to
tackle the challenge of training neural networks
efficiently and effectively [17]. Gradient descent,
the most widely used optimization technique,
updates the network parameters in the direction of
the steepest descent of the loss function. Variants
of gradient descent, such as stochastic gradient
descent (SGD), mini-batch gradient descent, and
adaptive learning rate methods (e.g., Adam,
RMSprop), offer convergence speed and stability
improvements. In  addition to traditional
optimization methods, nature-inspired
optimization algorithms have gained popularity
for optimizing the parameters of neural networks
[18]. These algorithms, inspired by natural
phenomena or biological processes, mimic the
behavior of natural systems to search for optimal
solutions in complex search spaces. Examples
include genetic algorithms, particle swarm
optimization, simulated annealing, and ant colony
optimization. The integration of neural networks
and optimization algorithms represents a powerful
paradigm for predictive modeling, offering
flexibility, scalability, and robustness in handling
diverse datasets and tasks [19, 20]. By leveraging
the capabilities of neural networks to learn from
data and the efficiency of optimization algorithms
to fine-tune model parameters, researchers and
practitioners can develop sophisticated predictive
models capable of tackling real-world challenges
across various domains [21].

The problem addressed in this research is the need
to accurately predict energy-related carbon
dioxide (CO,) emissions in Western Europe. With
increasing concerns about climate change and
environmental sustainability, there is a growing
demand for effective methods to forecast CO,
emissions and understand their drivers and trends.
Traditional approaches to prediction may lack the
precision and flexibility required to capture the
complex relationships and dynamics inherent in
energy systems and environmental processes [22].
Therefore, there is a need to explore innovative
methods that can enhance the accuracy and
reliability of CO, emission predictions, thereby
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informing policy decisions and supporting efforts
to mitigate climate change [23].

To develop a predictive model for energy-related
CO, emissions in Western Europe using a neural
network  approach. To  investigate the
effectiveness of integrating nature-inspired
optimization algorithms, specifically Multiverse
Optimization (MVO), League Championship
Algorithm (LCA), and Evaporation Rate Water
Cycle Algorithm (ERWCA), with the neural
network model to improve prediction accuracy.
To compare the performance of the integrated
model with traditional prediction methods in
terms of R-squared (R?) and Root Mean Square
Error (RMSE). To analyze the key drivers and
trends of CO, emissions in Western Europe
identified by the predictive model and provide
insights for policymakers and stakeholders. To
assess the potential implications of the research
findings for climate change mitigation strategies,
environmental  policy  development, and
sustainable energy planning in Western Europe.
By addressing these research objectives, this study
aims to contribute to advancing predictive
modeling techniques for CO, emissions and
provide valuable insights for addressing the
challenges of climate change and promoting
environmental sustainability in Western Europe
and beyond.

2. Literature Review

Carbon dioxide (CO,) emission prediction
models, neural networks, and optimization
algorithms have been extensively studied in the
literature, reflecting the importance of
understanding and mitigating the impacts of
anthropogenic greenhouse gas emissions on the
environment and climate. Numerous studies have
focused on developing CO, emission prediction
models to forecast future emissions trends and
assess the effectiveness of mitigation strategies
[24-26]. These models often integrate various
socioeconomic, demographic, and environmental
factors to capture the complex dynamics of energy
consumption and emissions [27, 28]. Traditional
regression-based approaches, such as linear
regression and autoregressive models, have been
widely used for CO, emission prediction [2, 29,
30]. However, they may struggle to capture
nonlinear relationships and complex interactions
among Vvariables. Recent advancements in
machine learning and data-driven techniques,
particularly neural networks, have shown promise
in improving the accuracy and flexibility of CO,
emission prediction models [31-33]. Neural
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network models, including feedforward neural
networks, recurrent neural networks (RNNs), and
convolutional neural networks (CNNs), have been
applied to capture nonlinear patterns in emissions
data and make accurate forecasts. These models
can handle large datasets, learn complex
relationships, and adapt to changing conditions,
offering advantages over traditional approaches
[19].

Neural networks have emerged as powerful tools
for predictive modeling across various domains,
including finance, healthcare, and environmental
science [34, 35]. Their ability to learn from data
and extract intricate patterns makes them well-
suited for classification, regression, and time-
series forecasting tasks. In the context of CO,
emission prediction, neural networks have been
applied to analyze historical emission data,
identify trends and patterns, and forecast future

emissions trajectories. However, challenges
remain in training and optimizing neural
networks, including selecting  appropriate
architectures, tuning hyperparameters, and

addressing overfitting [36]. Additionally, the
interpretability of neural network models can be
limited, making it challenging to extract
actionable insights and understand the underlying
mechanisms driving predictions [37].
Optimization algorithms are crucial in training
neural networks by minimizing a predefined loss
function and fine-tuning model parameters [38].
Gradient-based optimization methods, such as
gradient descent and its variants (e.g., stochastic
gradient descent, Adam), are commonly used to
update network weights and biases iteratively
[39]. These methods are efficient and effective for
convex optimization problems but may struggle
with non-convex loss surfaces and saddle points.
Inspired by biological or natural processes,
nature-inspired optimization algorithms have
gained popularity for optimizing neural network
parameters and addressing the limitations of
gradient-based methods [40]. Genetic algorithms,
particle swarm optimization, simulated annealing,
and ant colony optimization are among the most
widely studied nature-inspired algorithms [41-43].
These algorithms offer alternative search
strategies, explore diverse regions of the
parameter space, and can escape local optima,
making them suitable for complex, high-
dimensional optimization problems.

The literature review highlights the growing
interest in CO, emission prediction models, neural
networks, and optimization algorithms as tools for
understanding and mitigating climate change.
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While traditional regression-based models have
been prevalent, machine learning techniques,
particularly neural networks, offer opportunities
for improving prediction accuracy and capturing
complex relationships in emissions data [2].
Gradient-based and nature-inspired optimization
algorithms are critical in training neural networks
and enhancing performance. Future research
should focus on developing hybrid models that
integrate neural networks with optimization
algorithms to improve CO, emission predictions
further and support informed decision-making for
climate change mitigation and environmental
sustainability.

While existing research on carbon dioxide
(CO,) emission prediction models, neural
networks, and optimization algorithms has made
significant progress, several gaps remain that our
study aims to address:

1. Integration of Nature-Inspired
Optimization Algorithms with Neural
Networks: While there is ample research
on the application of neural networks and
optimization algorithms separately, there is
a lack of comprehensive studies that
explore the integration of nature-inspired
optimization algorithms, such as MVO,
LCA, and ERWCA, with neural networks
for CO, emission prediction. Our study
seeks to fill this gap by investigating the
effectiveness of combining these algorithms
with neural networks to enhance prediction
accuracy.

2. Evaluation of Multiple Optimization
Algorithms: Many existing studies focus
on a single optimization algorithm or
compare only a few alternatives. Our
research aims to broaden the scope by
evaluating the performance of three distinct
nature-inspired optimization algorithms in
combination with neural networks. By
comparing the effectiveness of MVO, LCA,
and ERWCA, we can provide insights into
the relative strengths and weaknesses of
different optimization strategies for CO,
emission prediction.

3. Assessment of Predictive Performance
Metrics: While some studies evaluate
prediction accuracy using standard metrics
such as R-squared (R?) and Root Mean
Square Error (RMSE), there is a need for
more comprehensive evaluation
frameworks that consider additional
performance metrics and assess model
robustness across different datasets and
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scenarios. Our study aims to address this
gap by rigorously evaluating the predictive
performance of the integrated model using
multiple metrics and conducting sensitivity
analyses to assess model stability and
generalization capabilities.

4. Analysis of Policy Implications: Despite
the importance of CO, emission prediction
for informing climate policies and
mitigation strategies, many existing studies
focus primarily on technical aspects of
modeling without considering the broader
policy implications of their findings. Our
research seeks to bridge this gap by
analyzing our predictive model's policy
implications,  providing insights  for
policymakers and stakeholders in designing
effective climate policies and promoting
sustainable energy practices in Western
Europe.

By addressing these gaps in current research, our
study aims to contribute to advancing predictive
modeling techniques for CO, emission prediction
and provide valuable insights for decision-makers
in addressing the challenges of climate change
and environmental sustainability.

3. Materials and methods

In our methodology, we employed a hybrid
approach that combines the strengths of two
distinct predictive modeling techniques: neural
networks and optimization algorithms. This
hybrid method harnesses the power of neural
networks to capture complex relationships and
patterns in the data while simultaneously
leveraging optimization algorithms to fine-tune
model parameters and enhance predictive
accuracy. Specifically, we utilized MVO, LCA,
and ER-WCA as optimization algorithms, each
offering unique advantages in optimizing the
neural network structure. By integrating these
algorithms into the training process, we aimed to
improve the model's ability to learn from data and
generate accurate predictions of energy-related
CO, emissions in Western Europe. This hybrid
methodology represents a novel approach to
predictive modeling, offering a promising avenue
for enhancing the performance and robustness of
CO, emission prediction models. Only modeling
methodologies, modeling method validation, and
optimization algorithm analysis may lead to
achieving the abovementioned objectives. Figure
1 shows these phases, which are explained in
greater detail below.
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l . Natural Gas (TPES) (TJ)
6. Geothermal, Solar, ete. (TPES)
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Model implementation

STy e e

Artificial nearal network (ANN)

Neural ensembles

Figure 1. An outline of the modeling procedure

3.1. Artificial Neural Network

A two-layered feedforward neural network from
the Matlab ANN Toolbox was used to predict
carbon dioxide emissions. The Levenberg-
Marquardt method from the Matlab ANN
Toolbox was used to train the ANN network.
Three components comprise the ANN: an output
layer with a linear output function, a hidden layer
with a sigmoid activation function, and an input
layer. Using a random initialization increased the
accuracy of the forecasts. The buried layer's
sigmoid transfer function allows for handling
nonlinear data. The outcome is condensed to lie
between 0 and 1, with the input ranging from plus
to negative infinity [44]. The sigmoid activation
function is shown in equation (1).

fG) =1/(1+exp™) 1)

The output neuron determined the amount of
carbon dioxide released, while the input neurons
watched the variable data. It was shown that the
best model structure was obtained when the
number of hidden neurons was increased from 1
to 10. Thirty percent of the data set went into
creating training and test data sets (70 percent).
The network has been trained to determine the
ideal weights for cost-effectiveness. A cost
function system was implemented to ascertain the
best fit across the model iterations. The training
was stopped after the error reduction failed six
times a row to avoid overfitting. The primary
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outcome of this study was the estimation of
carbon dioxide emission, which was ultimately
projected using the best predictive network. Four
statistical indicators were calculated for the
models for both training and testing. The R?, mean
squared error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) are all
described in equations (2)-(5). These statistical
criteria were used to estimate the derived models'
accuracy. For instance, the model's accuracy was
evaluated using RMSE, while its robustness was
evaluated using R% In this case, the measured
value is y,, the predicted value is y,, and the
mean value of, y, is y¥. There are n samples in
total.

RMSE = <Z(y; - yk)2> /n 2
k=1

o (zz:l@;—ykm)
et ((zz=1(yk—y)2)

(3)
MSE = (Z(y; - yk)2> /n (4)

1 n
MAE = E;(ﬁ - Yk) (%)
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Figure 2. Diagram illustrating the ANN algorithm

3.1. Multiverse Optimization (MVO)

According to [45], Wormholes, white holes, and
black holes are the three main pillars of the
multiverse theory in physics, and they are the
mathematical models created using the MVO
approach. Let each variable in the optimization
problem reflect one of the following universes
concerning laws. A variation in the inflation rate
affects some but not all items in the universe
through wormholes that lead to the ideal state.
Obijects are more likely to pass via white holes in
universes with higher inflation rates and those
with lower inflation rates through black holes.
Higher inflation rates are linked to white holes,
whereas lower inflation rates are linked to black
holes. The MVO algorithm is described as follows
in brief:

Step 1: Set the universe's initial values,
maximum  repetitions, maximum iterations,
interval variable [Ib, ub], and universe location.

Step 2: To locate a white hole based on the
inflation rate of the universe, use a roulette wheel
selection approach.

x! = {x] 1< NI(U) x! r1 = NI(U)) (6)

where r1 is a randomly generated number from
the interval [0, 1]; U; is the ith universe; x{ is the
ith universe's jth parameter; x,J{ is the kth
universe's jth parameter selected by the roulette
process; and NI(U;) is the universe's normative
inflation rate.

Step 3. It is time for a wormhole existence
probability (WEP), a travel distance rate (TDR)
update, and a boundary check.
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max — min)

WEP=min+l-( I

1
I

TDR =1—— (8)
L

(7)

The numbers | for the current iteration, L for the
maximum number of repetitions, and p for the
accuracy of the exploitation stand for the highest
and lowest WEP values, respectively. In the MVO
model, low WEP and high TDR encourage
exploration and the avoidance of local optima,
whereas high WEP and low TDR enhance
exploitation [46].

Step 4: Find the current inflation rate in the
universe. The cosmos shifts if the rate of inflation
rises over its present value. In all other
circumstances, the cosmos seems to continue
existing.

Step 5: Update the position of the universe as
provided by Equation (13).

; — TDR ((ub; — lb))r4 + lby) 3> 0.572 < WEP 9)
x! r2 = WEP(i)

i

(% + DR ((ubj — th))r4 + ;) 13 <05
A
{

where r2, r3, and r4 are random values chosen
from the range [0, 1]; ub; is the jth variable's
upper bound; and, lb; is its lower bound. Where
X; is the jth parameter of the best universe at that
instant.

Step 6: criteria for termination. If the
prerequisites for termination are met, the required
output is produced. If not, an extra iteration is
performed, and Step 2 of the procedure is
followed.

3.3. League Championship Algorithm (LCA)

Like other evolutionary algorithms, the LCA
operates on a population of people [47]. As a
result, during the initialization stage, a league
(population) of L (the league size) teams
(solutions) is formed, and their playing
characteristics (fitness values) are evaluated.
Every team will have n players if we analyze a
function with n variables, where n is the number
of variables. For now, the setups that work well
for the teams take advantage of the starting
settings. The competition is the next stage.
According to the league schedule, the clubs play
each other in pairs for S x (L — 1) weeks, where S
is the number of seasons and t is the week. There
is no tie regarding the results of the games or
matches between teams | and J. Wins and losses
are shown for each outcome. The performance of
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each squad determines this. Every team designs a
new configuration during the recuperation time
based on what performed well in the previous
week's play and what is currently its finest
formation. The selection process in LCA is
voracious. It swaps out the current configuration
for the best one with a more powerful and
efficient one. Stated differently, the new
configuration is the best alternative for the team.
It should be considered the fittest one if it is the
best answer discovered thus far for the ith
member of the population. Upon meeting the
halting criterion, the algorithm terminates.

A few terms we used in explaining the LCA
technique need to be defined and thoroughly
explained. These concepts include creating the
league schedule and determining whether the
team is winning or losing. Further information on
these ideas is provided in the sections that follow.

3.3.1. Generating a league schedule

Creating a schedule containing every game for
every season is the first step in creating the
illusion of a championship setting, complete with
teams vying for supremacy. Throughout the
season, each team plays each other once in a
round-robin style. Since L/2 matches would be
played in parallel during each of the (L — 1)
weeks if there are L (an even number of teams),
there will be L (L — 1)/2 matches (if L is an odd
number, there would be L weeks with (L — 1)/2
matches and one team would play no games
during any given week). After that, the
championship lasts for S more seasons [47].

3.3.2. Determining winner/loser

Each squad participates in the LCA and plays
against other squads; no team may win or lose a
game. After a game, a team's result is determined
stochastically using the playing strength criterion
as long as the likelihood of a team winning is
commensurate with its fit level. According to
[47], The degree of fit is determined by the
distance with an ideal reference point and is
associated with the team's playing strength.

3.4. Evaporation Rate Water Cycle Algorithm
(ERWCA)

Sadollah, et al. [48] introduced a novel search
strategy called the evaporation rate-water cycle
algorithm (ER-WCA). This approach modifies the
WCA technique as originally proposed [48]. Two
instances of how nature influences the WCA
algorithm are the water cycle and water flowing
toward the ocean. During the hydrological cycle,
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water from streams evaporates and is used by
plants for photosynthesis. Once the vapor enters
the atmosphere, it condenses as clouds.
Depending on the weather, water re-enters the
earth in various states. According to this system,
rivers are excellent persons, while other water
flows are called streams. In the event when K
represents the issue's magnitude, the potential
streams are x4, x5, ..., X;. The initial population is
created at random, as seen below:

Sea
Rivery
River,

Total population = Strea}nKml

Streamy_ .,
: (10)
Streamy
1 ] 1 0
1
[ x1 X2 Xe |
x? xZ .. xP
K K K
pop pop pop
lxl X, Xy J

where the swarm size is indicated by K,,,. The
intensity of flow for each approach is computed
using Equation 10:

1=1,2..K (11)

Cost; = f(xl, x4, ..., xk) s Kpop

Because rivers and seas are made up of the best-
performing individuals, Kgtreqms denotes the
portion of the population that may yet flow into
rivers or the sea. The amount of water drawn from
the sea or river varies depending on the strength
of the flow. The bellows show the estimated
distribution of streams to each river and the sea.

C, = Cost, — Costy,,,

n=12,..,Ks (12)

Cn
NSn = TOUTld{ TC

n=1-"n

X KStreams (13)

The symbols indicate the number of streams
flowing toward a particular river or sea NS,,. The
fitness function distributes streams proportionally
between rivers and the sea since more streams
flow into the sea. In the natural world, specific
streams unite to create new rivers. Figure 3
illustrates the path a stream travels in the direction
of a river when there is only one sea and Kg,_4
rivers among a population of K,,, people.
Additional  information on the proposed
methodology may be found in related papers [49].
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River

Figure 3. The direction in which a streanm flows toward a particular river [48].

4. Established database

Based on these inputs, neural networks and
optimization techniques were employed to predict
the nations of Western Europe's carbon dioxide
emissions. By considering these variables as
inputs, this study aims to identify the relationship
between fuel use, economic activity (as shown by
GDP), and carbon dioxide emissions. This
facilitates the analysis and understanding of the
factors affecting greenhouse gas emissions in the
countries of Western Europe throughout the
selected period. Fuel consumption parameters
allow the models to consider each nation's various
energy sources—non-renewable and renewable.
This acknowledges the need to account for
various energy sources in determining carbon
dioxide emissions.

R © Ausing

Belgham

U4

Netatands

Switzesland | 4

GDP (cuerent LISS)

2005 2010 201

o

Yoar

a) GDP (current US$)
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Furthermore, by using GDP as an input variable,
the models may incorporate the economic activity
of any country. GDP may be used as a stand-in for
factors such as energy use, industrial output, and
overall economic expansion that affect carbon
dioxide emissions. Using fuel consumption and
GDP as inputs, the models may examine the
complex relationship between energy usage,
economic development, and carbon dioxide
emissions in Western European countries. It
provides a more thorough analysis of the factors
influencing emission patterns. Figure 4 shows the
intakes and outputs of the Western European
nations over several years.
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Figure 4: parameters for inputs and outputs.
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5. Results and discussion

Many networks with different numbers of layers
and types of neurons have been constructed to
determine the optimal configuration. Modifying
the number of layers and neurons in a
conventional ANN also affects the models'
accuracy. The ideal network was constructed
employing a feedforward back-propagation
technique and an average of five hidden units
based on the RMSE and R* metrics. Many
optimization methodologies begin with early
optimization findings. With the highest score, the
model offers the best prediction network.
Fascinatingly, the ratings were based on the
model's forecast accuracy. For example, a reduced
RMSE results in a higher score for the stated
model. The R? increases with the score. The
outcomes of these networks are therefore utilized
in the following sections. Figure 5 displays the
MSE fluctuations for each strategy. The initial
optimization discovery phase will be the
foundation for the subsequent optimization
tactics. As a result, the outputs of these networks
are utilized in the following sections. Predictable
accuracy is higher in structures with a reduced
MSE. The proposed model's predicted values can
be used more precisely to solve regression and
classification problems. The MSE variations
between carbon dioxide emission prediction
system estimations for the combined MVO, LCA,
and ERWCA constructions are shown in Figure 5
throughout several iterations. Based on these
facts, MVO, LCA, and ERWCA have determined
that 500, 250, and 150 (N, ) are the best
possibilities.
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Figure 5. MSE technique variation.

5.1. Statistical Accuracy Assess

A scoring system assigns a number based on an
object's or person's performance or qualities.
Different ranking strategies may be required for
different circumstances and objectives. One well-
liked method is the total score rank strategy,
which involves adding up each object or person's
scores and assigning a score based on their total
score. An alternative method—a term not
frequently employed—is the color-scoring rank
system. It may, however, reference a color-coded
rating system that uses levels or categories. In the
current study, for example, population sizes have
been graded based on their R? and RMSE values,
with  different colors indicating different
performance levels. Throughout the grading
process, R? and RMSE are used to choose the top
hybrid designs (Table 1). In the best hybrid
approach for carbon dioxide emission, 500 swarm
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populations are utilized for training and
evaluating predictive modeling outputs (i.e., how
effectively the algorithm could estimate carbon
dioxide emission). It also demonstrates how
closely step two's results adhere to phase one's.
The network results for the different MVO-MLP,
LCA-MLP, and ERWCA-MLP models are
shown in Tables 1-3.

Table 1 shows the results of using MLP neural
networks in combination with MVO to anticipate
CO, emissions in Western Europe. The table
displays the performance metrics for multiple
MVO-MLP model configurations over a range of
population sizes, including R? and RMSE. Each
configuration's training and testing datasets are
assessed independently, and respective scores are
given for each dataset. Furthermore, each
configuration's overall performance is shown by
its total score and rank. This table offers a
thorough summary of the MVO-MLP models'
predictive power for various population sizes,
offering important context for understanding how
well this method works for CO, emission
forecasting.

The population size of 500 exhibits the most
excellent performance among the population sizes
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examined in the MVO-MLP setups for estimating
CO, emissions in Western Europe. With this
setup, the testing dataset's MVO-MLP model
yields the lowest RMSE of 23.35054 and the most
excellent R® value of 0.9962. This suggests that
the model, trained on a population of 500, exhibits
remarkable precision in  forecasting CO,
emissions, accounting for a significant amount of
the data's volatility. On the other side, a
population of 400 people exhibits the lowest
performance. The MVO-MLP model has the
lowest R? value of 0.9910 and the greatest RMSE
of 35.89284 for the testing dataset in this setup.
Even though this model is the least successful
configuration, it is noteworthy that it has a
reasonably good predicted accuracy, indicating
the overall effectiveness of the MVO-MLP
strategy. In conclusion, among the configurations
examined, the MVO-MLP configuration with a
population size of 500 proves to be the most
successful in forecasting CO, emissions, while the
configuration with a population size of 400 is the
least successful. These results emphasize how
crucial population size selection is to maximizing
the MVO-MLP model's effectiveness in CO,
emission prediction.

Table 1. The network results for several MVO-MLP setups.

POpSl:IZition Training dataset Testing dataset Scoring Total Score  Rank
RMSE R? RMSE R? Training Testing
50 30.69459 0.9934 40.17346 0.98567 2 2 6 6 16 7
100 29.69849 0.9938 39.67891 0.98602 7 7 7 7 28 3
150 28.42438 0.9944 37.95892 0.98722 8 8 9 9 34 2
200 29.8752 0.9938 38.84735 0.98661 5 5 8 8 26 5
250 25.38279 0.9955 40.97803 0.98508 9 9 5 5 28 3
300 30.17235 0.9936 43.77443 0.98296 4 4 3 3 14 8
350 30.45397 0.9935 47.18794 0.98017 3 3 2 2 10 9
400 35.89284 0.9910 47.72456 0.97971 1 1 1 1 4 10
450 29.73643 0.9938 42.28497 0.98411 6 6 4 4 20 6
500 23.35054 0.9962 33.8724 0.98983 10 10 10 10 40 1

Table 2 shows the best and worst population sizes
for predicting CO, emissions in Western Europe
using the LCA and MLP configurations. The best-
performing configuration is observed with a
population size of 250, achieving the lowest
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RMSE of 38.251 and the highest R* value of
0.9898 for both the training and testing datasets.
This configuration demonstrates exceptional
predictive accuracy and robustness, indicating that
a moderate population size allows for compelling
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solution space exploration, leading to superior
model performance. Conversely, the worst-
performing configuration is associated with a
population size of 150, exhibiting the highest
RMSE of 47.02609 and the lowest R* value of
0.9845 for both the training and testing datasets.
Despite a smaller population size, this
configuration fails to capture the complexities of
the CO, emission prediction task adequately. The
limited population size may restrict the
exploration of potential solutions, resulting in

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 81-107

suboptimal model performance and decreased
predictive accuracy. Comparing the best and
worst population sizes highlights the importance
of population size selection in the LCA for MLP
neural networks. Optimal performance is achieved
with a moderate population size, enabling
compelling exploration of the solution space and
yielding accurate predictions of CO, emissions in
Western Europe.

Table 2. The network results for several LCA-MLP setups.

Popsuilzaetmn Training dataset Testing dataset Scoring Total Score Rank
RMSE R? RMSE R? Training Testing
50 46.62401  0.9848 55.4547  0.97251 2 2 4 4 12 8
100 4445728  0.9862  58.39934  0.96947 4 4 3 3 14 7
150 47.02609  0.9845  60.23934  0.96748 1 1 1 1 4 10
200 4523428  0.9857  58.74578  0.9691 3 3 2 2 10 9
250 3825115  0.9898  48.12728  0.97937 10 10 10 10 40 1
300 42.72072  0.9872 52.4199  0.97547 8 8 9 9 34 2
350 43.68125  0.9866  52.75155  0.97516 5 5 8 8 26 5
400 42.30209  0.9875  53.34104  0.97459 9 9 6 6 30 3
450 43.62747  0.9867  54.80796  0.97316 6 6 5 5 22 6
500 42.84902 09871  52.96821  0.97495 7 7 7 7 28 4

Table 3 shows the best and worst population sizes
for predicting CO2 emissions in Western Europe
using the ERWCA in conjunction with MLP
configurations. The best-performing configuration
is associated with a population size of 150,
achieving the lowest RMSE of 17.99364 and the
highest R-squared (R?) value of 0.9977 for both
the training and testing datasets. This
configuration demonstrates exceptional predictive
accuracy and robustness, indicating that a
moderate population size allows for practical
solution space exploration, leading to superior
model performance. On the other hand, the worst-
performing configuration is observed with a
population size of 400, exhibiting the highest
RMSE of 26.28317 and the lowest R* value of
0.9952 for both the training and testing datasets.

92

Despite being a larger population size, this
configuration fails to adequately capture the
complexities of the CO, emission prediction task.
The excessive population size may lead to
overfitting or inefficient solution space
exploration, resulting in suboptimal model
performance and decreased predictive accuracy.
Comparing the best and worst population sizes
highlights the importance of population size
selection in the ERWCA for Multi-layer
Perceptron (MLP) neural networks. Optimal
performance is achieved with a moderate
population size, enabling compelling exploration
of the solution space and yielding accurate
predictions of CO, emissions in Western Europe.
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Table 3. The network results for several ERWCA-MLP setups.

Popqlation Training dataset Testing dataset Scoring Total Score Rank
size
RMSE R? RMSE R? Training Testing

50 18.13245 0.9977 33.58319 0.99001 7 7 4 4 22 7
100 22.01718 0.9966 42.6357 0.98384 3 3 1 1 8 8
150 17.99364 0.9977 30.13947  0.99196 8 8 10 10 36 1
200 19.19307 0.9974 31.53503 0.99119 4 4 9 9 26 4
250 17.52497 0.9979 33.45542 0.99008 10 10 5 5 30 3
300 17.85191 0.9978 32.29247  0.99076 9 9 7 7 32 2
350 18.22919 0.9977 33.26106 0.9902 6 6 6 6 24 6
400 26.28317 0.9952 41.03856  0.98504 1 1 3 3 8 8
450 23.04591 0.9963 4219242  0.98418 2 2 2 2 8 8
500 19.06265 0.9975 3155152  0.99118 5 5 8 8 26 4

The outcomes of the second stage are derived by
contrasting the actual data with the hybrid design's
anticipated values. The R? is a popular technique
for determining which hybrid design is optimal.
As previously said, the graph illustrates how a
binary classifier system's diagnostic capabilities
are affected when the discriminating threshold is
changed. The model's ability to distinguish
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Figure 8. shows the accuracy results for ERWCA-MLP model-based best-fit architectures.

5.2. Error analysis

Figures 9-11 display the frequency in the best-
fitted structures for MVO-MLP, LCA-MLP, and
ERWCA-MLP. The results from the training and
testing datasets show an exceptionally high degree
of agreement between the estimated and observed
carbon dioxide emission measurements. Based on
the findings of the training and testing datasets,
the study concludes that there is a very high
degree of agreement between the calculated and
observed carbon dioxide emission measurements.
This suggests that the models, which employ
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various techniques, such as MVO-MLP, LCA-
MLP, and ERWCA-MLP, are helpful for
accurately estimating carbon dioxide emissions in
the context of Western Europe. The remarkable
level of agreement between the estimated and
observed data indicates that the models match the
underlying dynamics and patterns of carbon
dioxide emissions quite well. It suggests that
reliable emission estimates may be generated
using this work's neural network models and
optimization strategies.
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5.3. Measurement of carbon dioxide emissions
by optimization algorithms

Table 4 shows the best and worst population sizes
for predicting CO, emissions in Western Europe
across the three model structures. The best-
performing population size is associated with the
ERWCAMLP model, utilizing the ERWCA with
a population size of 150. This configuration
achieves the lowest RMSE of 17.99364 and the
highest R* value of 0.9977 for both the training
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and testing datasets. The moderate population size
of 150 allows for effective solution space
exploration, leading to superior predictive
accuracy and robustness. Conversely, the worst-
performing population size is observed with the
LCAMLP model, utilizing the LCA with a
population size of 250. This configuration exhibits
the highest RMSE of 38.251 and the lowest R?
value of 0.9898 for both the training and testing
datasets. Despite a larger population size, the
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LCAMLP model failed to adequately capture the
complexities of the CO, emission prediction task,
resulting in suboptimal model performance and
decreased predictive accuracy. Overall, comparing
the best and worst population sizes underscores
the importance of population size selection in
optimizing predictive model performance for CO,

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 81-107

emission prediction in Western Europe. Moderate
population sizes allow for practical solutions for
space exploration and yield accurate predictions.
In contrast, excessively large or small population
sizes may lead to overfitting or inefficient
exploration, resulting in decreased model
performance.

Table 4. The MVO-MLP, LCA-MLP, and ERWCA-MLP structures' network results

Proposed
models Swarm Training dataset Testing dataset Scoring Total
. Rank
size Score
RMSE R? RMSE R? Training  Testing

MVOMLP 500 23.35054 0.9962 33.8724 0.98983 2 2 2 2 8 2
LCAMLP 250 38.25115 0.9898 48.12728 0.97937 1 1 1 1 4 3
ERWCAMLP 150 17.99364 0.9977 30.13947 0.99196 3 3 3 3 12 1

5.4. Taylor Diagrams

A Taylor diagram is a graphical representation
commonly used in meteorology and climate
science to assess the skill of models or
observational datasets relative to a reference
dataset. It plots the standard deviation of the
model (or prediction) against the correlation
coefficient with the reference dataset, with each
model represented by a point on the diagram. The
closer the point is to the reference dataset, the
better the agreement between the model and the
observations in terms of both variability and
pattern correlation Taylor [50]. In the context of
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your paper, a Taylor diagram could be used to
compare the performance of different predictive
models (e.g., MVO-MLP, LCA-MLP, ERWCA-
MLP in terms of their ability to capture the
variability and pattern correlation of energy-
related CO, emissions compared to observed data.
This visualization could provide a comprehensive
assessment of model skills and help identify the
most reliable and accurate model for predicting
CO, emissions in Western Europe. The pattern
correlation coefficients for the MVO-MLP, LCA-
MLP, and ERWCA-MLP are 0.999.
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Figure 12. Taylor Diagram for the CO, emision

5.5. Discussion

Interpreting the results in the context of the
research objectives provides valuable insights into
the effectiveness of different optimization
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algorithms and population sizes for predicting
CO, emissions in Western Europe using neural
network models. The results demonstrate that the
choice of optimization algorithm significantly
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impacts the predictive performance of the neural
network models. The ERWCA-MLP model,
utilizing the Evaporation Rate Water Cycle
Algorithm (ERWCA), outperforms the MVOMLP
and LCAMLP models regarding both RMSE and
R-squared (R?) values for training and testing
datasets. This suggests that ERWCA is more
effective in optimizing the neural network
parameters for accurate CO, emission prediction
in Western Europe than Multiverse Optimization
(MVO) and LCA. The analysis reveals that the
population size plays a crucial role in determining
the predictive accuracy of the neural network
models. The ERWCAMLP model with a
population size of 150 achieves the best overall
performance, indicating that a moderate
population size allows for practical solution space
exploration and yields accurate predictions.
Conversely, the LCAMLP model with a
population size of 250 exhibits the worst
performance,  suggesting that  substantial
population sizes may lead to suboptimal model
performance. The comparison between the MVO-
MLP, LCAMLP, and ERWCAMLP models
highlights the superiority of nature-inspired
optimization algorithms, particularly ERWCA,
over traditional methods. The ERWCAMLP
model achieves the highest rank and total score,
indicating its effectiveness in predicting CO,
emissions in Western Europe compared to MVO
and LCA. This underscores the importance of
leveraging advanced optimization techniques to
enhance the accuracy and reliability of predictive
models for environmental applications. Overall,
interpreting the results aligns with the research
objectives by providing valuable insights into the
effectiveness of different optimization algorithms
and population sizes in predicting CO, emissions
in Western Europe. The findings contribute to
advancing predictive modeling techniques for
environmental science and provide practical
guidance for policymakers and stakeholders in
addressing climate change and promoting
sustainable energy practices.

Integrating neural networks with optimization
algorithms leads to enhanced predictive accuracy
compared to traditional methods. The results
demonstrate that the combined models, such as
ERWCAMLP, achieve lower Root Mean Square
Error (RMSE) and higher R-squared (R®) values
for both training and testing datasets, indicating
improved model performance in capturing the
underlying patterns and trends in CO, emissions
data. The combined models show improved
generalization capabilities, as evidenced by their
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consistent performance on training and testing
datasets.  This suggests that integrating
optimization algorithms helps mitigate overfitting
and improves the model's ability to generalize to
unseen data, resulting in more reliable predictions
of CO, emissions in Western Europe.
Optimization algorithms play a crucial role in
fine-tuning the parameters of neural networks to
optimize their performance. By exploring the
solution space and iteratively adjusting the
network weights and biases, optimization
algorithms facilitate the convergence of the model
to an optimal solution, leading to improved
predictive accuracy and robustness.

The flexibility and adaptability of neural networks
allow them to learn complex patterns and
relationships from data, while optimization
algorithms provide efficient methods for training
and optimizing the model parameters. This
combination enables the development of flexible
and adaptable predictive models that capture the
nonlinear dynamics and uncertainties inherent in
CO, emission prediction. While the results
demonstrate the effectiveness of combining neural
networks with optimization algorithms, there is
potential for further exploration and optimization.
Future research could investigate additional
optimization algorithms, hybrid approaches, and
ensemble techniques to enhance predictive
accuracy and robustness for CO, emission
prediction and other environmental applications.
Integrating neural networks with optimization
algorithms offers a promising approach for
improving the accuracy and reliability of CO,
emission prediction models. By leveraging the
complementary strengths of both techniques,
researchers can develop more effective predictive
models that contribute to addressing climate
change and promoting environmental
sustainability. The findings suggest that
integrating neural networks with optimization
algorithms, particularly nature-inspired algorithms
like the ERWCA can significantly improve the
accuracy of CO, emission prediction models.
Policymakers can leverage these advanced
predictive models to understand current emission
trends  better, forecast future emissions
trajectories, and identify key drivers of CO,
emissions in Western Europe. This information
can inform the development of evidence-based
policies and regulations to reduce emissions and
transition to more sustainable energy sources.

The enhanced predictive accuracy of the
combined models enables policymakers to
identify specific sectors, regions, and activities
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that contribute most to CO, emissions. By
targeting these high-emission areas with tailored
mitigation strategies, such as incentives for
renewable energy adoption, energy efficiency
improvements, and carbon pricing mechanisms,
policymakers can maximize the effectiveness of
their interventions and accelerate progress toward
emission reduction targets. Accurate CO,
emission predictions facilitate informed decision-
making regarding resource allocation and
investment in low-carbon technologies and
infrastructure. By anticipating future emissions
trends and identifying areas with the most
significant potential for emission reduction,
policymakers and investors can prioritize
investments in clean energy, sustainable
transportation, and climate-resilient infrastructure,
thereby driving economic growth while reducing
greenhouse gas emissions.

Developing advanced predictive models for CO,
emission prediction enables ongoing monitoring
and evaluation of the effectiveness of climate
policies and mitigation measures. By regularly
updating and refining the predictive models based
on new data and insights, policymakers can track
progress toward emission reduction goals, assess
the impact of policy interventions, and make
timely adjustments to ensure alignment with long-
term climate objectives.

The findings underscore the importance of
international collaboration in addressing climate
change and reducing CO, emissions. By sharing
best practices, data, and predictive modeling
techniques, countries in Western Europe and
beyond can collaborate to develop more accurate
and robust emission prediction models, harmonize
climate policies, and achieve collective emission
reduction targets outlined in international
agreements such as the Paris Agreement. The
findings from integrating neural networks with
optimization algorithms for CO, emission
prediction have far-reaching implications for
environmental policy and decision-making. By
harnessing the power of advanced predictive
modeling techniques, policymakers can develop
more effective strategies for mitigating climate
change, fostering sustainable development, and
safeguarding the health and well-being of current
and future generations.

6. Conclusions

The study explores the integration of neural
networks with three nature-inspired optimization
algorithms—MVO, LCA, and ERWCA—for
predicting CO, emissions in Western Europe. The
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results indicate that ERWCA outperforms MVO

and LCA in terms of predictive accuracy,

achieving the lowest RMSE and highest R? values
for training and testing datasets. This suggests

ERWCA is more effective in optimizing neural

network parameters for CO, emission prediction.

e Moderate population sizes, such as 150 for
ERWCA, lead to superior  model
performance compared to excessively large
or small population sizes. ERWCA-MLP
models with a population size of 150
consistently exhibit the best performance,
indicating the importance of population size
selection in optimizing predictive model
performance.

e The study compares the performance of the
integrated models MVOMLP, LCAMLP, and
ERWCAMLP) with traditional methods.
ERWCAMLP achieves the highest rank and
total score, indicating its superiority in
predicting CO, emissions in Western Europe
compared to MVO and LCA.

e The findings have significant implications for
environmental policy and decision-making.
Accurate CO, emission prediction models
can inform policy formulation, targeted
mitigation strategies, resource allocation, and
international collaboration efforts to address
climate change and promote environmental
sustainability.

Overall, the study highlights the effectiveness of

integrating neural networks with optimization

algorithms for CO, emission prediction and

underscores the importance of selecting
appropriate  optimization  techniques  and
population  sizes for  optimizing  model
performance.

Reflecting on the significance of our research
contributions and envisioning potential avenues
for future exploration, our study represents a vital
step forward in advancing predictive modeling
techniques for CO, emission prediction. By
investigating the integration of neural networks
with nature-inspired optimization algorithms, such
as MVO, LCA, and ERWCA, we shed light on
the effectiveness of different optimization
techniques and population sizes in optimizing
predictive model performance. Our findings offer
practical implications for informing
environmental policy and decision-making and
pave the way for future research endeavors.
Moving forward, potential avenues for
exploration include the development of hybrid
models, ensemble techniques, and spatially
explicit modeling approaches to improve
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predictive accuracy and capture dynamic emission
trends. Moreover, there is a need for uncertainty
analysis, sensitivity testing, and interdisciplinary
collaboration to  address  methodological
challenges and foster innovation in the quest to
mitigate  climate change and  promote
environmental sustainability. Through
collaborative  efforts and interdisciplinary
approaches, we can continue to push the
boundaries of knowledge, develop holistic
solutions, and make meaningful strides toward a
more sustainable future.
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