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Given the huge growth in urban innovation over the past 10 years, smart cities require

rational and workable solutions for transportation, building infrastructure,
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environmental conditions, and human enjoyment. This paper presents and explores

data-mining-based predicted energy consumption models for a small-scale, intelligent
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steel company in South Korea. Devices built on the Internet of Things (l1oT) are used

to collect and process energy use data in order to forecast. Among the data used are
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leading and following currents, carbon dioxide emissions, load kinds, reactive power,

and power factor. The Leagues Championship Algorithm (LCA), Evaporation-rate
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Water Cycle Algorithm (ERWCA), Multiverse Optimization Algorithm (MVO),

Cuckoo Optimization Algorithm (COA), and Stochastic Fractal Search (SFS). The
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following metrics are used to evaluate the models' predictive power: root mean square
error, mean absolute error (MAE), and coefficient of variation (R2) (RMSE). With the
greatest R2 values (0.99800 during testing and 0.99815 during training), the Multilayer
Perceptron (MLP) arrangement augmented by ERWCA performs exceptionally well

and demonstrates a strong correlation between the predicted and actual energy

Steel Production,
Artificial Neural Network,

consumption. Moreover, ERWCA has the lowest RMSE, a measure of the least number
of prediction errors (2.09627 in the testing phase and 2.03778 in the training phase).

Comparably low RMSE values (2.59167 during testing and 2.50700 during training)

Metaheuristic

and excellent performance in terms of R2 values (0.99695 during testing and 0.99720

during training) also suggest that SFS could be used to improve MLP models for
accurate energy consumption forecasts in smart city industrial buildings. These
findings show how reliable and accurate the SFS and ERWCA energy use estimations

are.

1 Introduction

Rising economic growth and population expansion in
emerging nations have resulted in an increase in
global energy demand. It is projected that worldwide
energy consumption would increase by around 25%
by 2040, notwithstanding increases in efficiency
over the last several decades [1]. According to the
International Energy Agency (IEA) [2], demand is
expected to rise sharply in emerging countries
between 2017 and 2040, especially in Asia and
Africa. According to the scenario being studied, there

will be a 10% rise in CO; emissions connected to
energy. 32.6 to 35.9 gigatons, respectively. Forecasts
indicate that CO, emissions in developed nations will
decline by 23 percent and rise by 27 percent in
emerging economies. Energy use has a substantial
impact on the environment. It has been shown that
the Earth's ongoing warming is mostly caused by
CO; emissions [3, 4]. Moreover, future projections
suggest that this upward trend will not abate.
Therefore, the main objective of international
political, economic, and environmental study at the
moment is lowering CO, emissions. To save energy
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and improve environmental protection, new energy-
efficiency regulations are being implemented. For
example, the present energy plan of the European
Commission requires every member state to carry
out a set of measures aimed at achieving a minimum
of 20 percent energy efficiency [5]. Though many
firms contribute to these emissions, the building and
building construction industries account for around
40% of global CO. emissions and 36% of total
energy use [6]. Research has demonstrated that a
number of building subsectors, such as lighting,
water heating, space heating and cooling, and others,
have the potential to save energy in an efficient
setting. Therefore, developing prediction models for
energy use is more important in order to decide how
energy limitations should be implemented. The
forecasting problem may often be divided into three
categories: load forecasting for the short, medium,
and long periods, depending on the prediction
horizon. Medium-term forecasting spans periods of
one hour to one week, whereas short-term
forecasting covers periods of one month to one year.
Finally, a prediction horizon beyond a year signifies
a prognosis for the long term. Most works
concentrate on the short-term prediction horizon
because of its higher accuracy than other horizons.
These days, sensors are put in an increasing number
of buildings to evaluate many aspects of the
building's performance, including the electric energy
usage that has been recorded [1]. "Smart buildings"
are the term used to describe these types of buildings.
Because these measurements are reusable, they are a
valuable source of historical data that can be
organized into time series and used to predict the
future energy requirements of the structures [1].

Effective energy consumption prediction models
using hybrid ANN meta-heuristic algorithms are
essential for cost-effective energy optimization and
consumption reduction in smart city industrial
buildings [7]. These models employ machine
learning and artificial intelligence techniques to
estimate and control energy usage for non-residential
buildings, with a focus on improving prediction
accuracy [8]. Artificial neural networks (ANNS)
have been shown to be an excellent way to control
building energy use, especially when data collected
over long periods of time is used [9]. Moreover, it
has been proposed that deep learning approaches be
used to solve low accuracy and overfitting issues,
particularly when working with large datasets [10].
By utilizing data-driven machine learning techniques
and optimization tactics, these models might be
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further enhanced to boost prediction reliability and
accuracy [11]. Generally speaking, creating
trustworthy energy consumption projection models
iS necessary to ensure that industrial buildings in
smart cities satisfy sustainability and energy
efficiency requirements.

Machine learning techniques are increasingly being
used to predict energy usage in industrial cities,
particularly in smart buildings that have sensors
monitoring every element of the building's
functioning, including the use of electric energy [1].
These measurements provide useful historical data
that may be used to anticipate the buildings' future
energy usage and build time series [1]. Energy
consumption projection models are essential for
smart city industrial buildings to achieve
sustainability and energy efficiency standards [8].
Machine learning algorithms employ historical data
to estimate and manage the amount of energy
consumed by non-residential buildings, with a focus
on improving forecast accuracy [10]. Moreover, it
has been proposed that deep learning approaches be
used to solve low accuracy and overfitting issues,
particularly when working with large datasets [11].
By utilizing data-driven machine learning techniques
and optimization tactics, these models might be
further enhanced to boost prediction reliability and
accuracy [12]. In general, to reduce costs and
increase energy efficiency for smart city industrial
buildings, precise models for estimating energy use
must be developed [7].

Recent studies have focused on the use of machine
learning to predict energy usage in various industrial
scenarios. As an illustration, V E, et al. [13]
recommended and looked into predicted energy
consumption models for a sophisticated small-scale
steel mill in South Korea that are based on data
mining. Energy consumption data is collected by
loT-based systems and used for forecasting. Reactive
power, carbon dioxide emissions, leading and
following current power factor, and different loads
are the data sets that are employed. The five
statistical methods listed below are employed to
predict energy consumption: Classification, generic
linear regression, and regression trees The radial
basis kernel, CUBIST, and K nearest neighbors make
form a support vector machine. V E, et al. [13] shown
that the best outcomes with the lowest error levels are
produced by the CUBIST model. This model may be
used to create structural designs that are energy-
efficient, which will help with policy formation and
energy consumption optimization in smart cities.
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Chahbi, et al. [14] described a brand-new machine
learning (ML) technique for figuring exactly how
much energy commercial buildings use. It draws
attention to a trade-off between the interpretability
and performance of ML models, which are crucial
factors to take into account while creating ML-based
energy prediction. The case study that predicts
energy consumption in the steel industry
demonstrates the applicability of the recommended
approach. Chahbi, et al. [14] shown that the
permutation feature importance helps experts grasp
the model's findings and that the Random Forest (RF)
model produces the best prediction results for the
steel industry. To ascertain the essential components,
Ye, et al. [15] employed a data-driven random forest
(RF) based approach to explore the relationship
between building energy usage and building-block-
level building-oriented characteristics. The dataset of
Taipei City comprised 24,764 buildings in 881 city
blocks. The RF model outperforms other machine
learning models, including logistic regression, k-
nearest neighborhood, support vector machines, and
decision tree models, in terms of prediction accuracy
for the classification problem. Seven of the 59
building-oriented variables that are significant at the
city block level include building gross floor space,
building density, building construction year, and the
proportion of commercial buildings in the block.
Sathishkumar, et al. [16] investigated and assessed
the methods the steel industry uses to predict energy
use. Among the data utilized are the load type, CO;
emissions, and variables for leading and trailing
reactive power and current. Four statistical models—
Random Forest (a), Gradient Boosting Machine
(GBM) (b), Radial Kernel Support Vector Machine
(SVM RBF) (c), and Linear Regression (LR)—are
trained and evaluated on the test set (RF). When all
predictors are employed, the best model RF could
produce an RMSE score of 7.33 in the test set.

The need to optimize energy usage and reduce costs
in industrial contexts motivates the employment of
metaheuristic algorithms to anticipate energy use
[17]. These methods may be applied to optimize the
gray prediction model's parameters; the Grey Wolf
Optimizer (GWO) algorithm provides advantages in
terms of global optimal solution attainment, stability,
and convergence speed. Examining how each
incentive mechanism affects prosumers, customers,
and energy providers is the goal, with a focus on how
well the systems under study function in relation to
them other [17]. Because the research also examines
the relationship between prosumer numbers and
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energy injection and consumption, we can more
accurately predict and optimize energy use overall
[17]. This study presents a novel approach to
predicting energy consumption in the steel
manufacturing  sector by integrating five
metaheuristic ~ optimization  algorithms—COA,
MVO, LCA, ERWCA, and SFS—with a multilayer
perceptron (MLP) model. The significance of this
work lies in its comparative analysis of population
sizes and their effect on model performance, an area
not previously explored in such depth. The hybrid
frameworks were evaluated through robust metrics
(RMSE and R?» and a unified scoring system,
offering a comprehensive methodology for selecting
optimal modeling strategies in industrial energy
forecasting. The insights provided have direct
implications for improving energy efficiency in one
of the most energy-intensive industries.

2  Materials and methods

Figure 1 displays the research flowchart for this
investigation. The modeling approach of hybrid
optimization algorithms with neural networks
combines the benefits of both optimization
algorithms and neural networks to handle complex
problems. There may be differences in the modeling
process depending on the specific hybridization
methodology, the optimization strategy used, and the
specifics of the problem at hand. The effectiveness of
the hybrid model depends on how well the
optimization algorithm and neural network handle
the complex nature of the optimization problem.
Combining the learning and pattern recognition
capabilities of neural networks with the optimization
capabilities of metaheuristic algorithms is the aim of
hybrid models. General procedures for modeling
hybrid optimization algorithms with neural networks
include  problem  definition  (defining the
optimization problem that needs to be addressed) and
neural network architecture design (choosing the
number of layers, number of neurons in each layer,
activation functions, and overall structure). The
neural network will determine and map the
relationship between the input features and the
desired output.), hybridization technique (common
strategies include using the optimization algorithm
for weight optimization in the neural network,
initializing the neural network weights using the
optimization algorithm, or combining the solutions
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obtained by the optimization algorithm with the
neural network predictions.); combining neural
networks with optimization algorithms (involves
integrating the optimization algorithm within the
neural network's training process or using the
optimization algorithm to guide the search space
exploration for optimal neural network weights.),
creating the hybrid model (which entails employing
the selected optimization technique to optimize the
neural network weights). Validating and fine-tuning
(i.e., assessing the hybrid model's performance on an
alternative dataset not utilized for training) and
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searching the solution space for weights that
minimize a cost function—a measure of the
discrepancy between expected and actual results—
may be steps in the optimization process. In light of
the validation results, modify the model's parameters
(e.g., neural network architecture, optimization
algorithm  settings) to boost generalization.
Evaluation and experimentation: To determine how
effectively the hybrid model generalizes to new data,
use a test dataset. assess the performance metrics that
are relevant to the specific problem at hand (e.g.,
accuracy, mean squared error).

Training data
------------- Data provision e mm——— ey === 4 Model implementation |--- ——————
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Figure 1. A synopsis of the modeling process

2.1  Multi-layer perceptron (MLP)

The energy was estimated using a two-layered
feedforward neural network from the Matlab ANN
Toolbox. The ANN network was trained using the
Levenberg-Marquardt approach from the Matlab
ANN Toolbox. Three layers make up an artificial
neural network (ANN): an output layer with a linear
output function, a hidden layer with a sigmoid
activation function, and an input layer. The accuracy
of the forecasts was increased by using random
initialization. Nonlinear data can be handled using
the buried layer's sigmoid transfer function. After
compressing the input, which ranges from plus to
negative infinity, the result is between 0 and 1 [18].

The sigmoid's activation function is shown in
equation (1):

L f)=1/0+exp™) | |

While the input neurons tracked the data as it
changed, the output neurons calculated the energy
used. It was demonstrated that increasing the number
of hidden neurons from 1 to 10 produced the optimal
model structure. Training and test data sets were
created using thirty percent, or seventy percent, of
the whole data set. The network learns which weights
are the most economical during training. The
optimum model iteration for the data was found
using a cost function method. In order to prevent
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overfitting, the training was discontinued when the
error reduction failed six times in a row.

McCulloch and Pitts [19] were the ones who
originally put up the idea of an ANN. A number of
ANNSs have been suggested by academics for usage
in a variety of application scenarios due to their
potential for non-linear parameter mapping [20, 21].
Compared to other forms of artificial neural
networks, the Multi-Layer Perceptron (MLP) tool is
the most commonly used due to its flexible design,
large representational capacity, and plenty of data
samples [22]. Because of their backpropagation
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training, the MLPs are also known as generic
approximators or feedforward neural tools [23].
They possess a type of processing unit called
"neurons,” which allows them to predict nearly any
input-output method. Figure 2 depicts the whole
MLP structure used in this study. This structure
consists of three distinct layers: an output layer, a
hidden layer, and an input layer. The neurons in this
layer are tightly coupled to the neurons in any

adjacent layers [24].

Energy ‘
Efficiency in

Steel ‘
Production

Hidden layers
Output layers

Figure 2: Diagram of the MLP algorithm

The assessment of energy use, which was finally
forecast using the best predictive network, was the
primary result of this investigation. For both training
and testing, four statistical indicators were computed
for the models. Equations (2-5) define the coefficient
of determination (R?), mean absolute error, mean
squared error (MSE), and root mean square error
(RMSE). (MAE). The models' accuracy was assessed
using these statistical parameters. For example, R?
was used to assess the model's robustness and RMSE
was used to assess the model's accuracy. There are
three values for y: a mean value of y; a predicted

value of y,; and a measured value of y;.. There are n

samples total.

RMSE = (Z(y; - yk)z) /n O]
k=1
21 QRO = yk)2)>
we - (s ©

n

MSE = (Z 7 - yk)z) /n
k=1

(4)
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1 n
MAE = ;;(ﬁ _—— (5)

2.2 Cuckoo Optimization Algorithm (COA)
The population of cuckoos used by COA is the same
as that used by earlier evolutionary algorithms. They
carry eggs to the nests of their hosts. Some of the
eggs may develop into adult cuckoos if they closely
resemble the eggs of the host bird. Nevertheless,
some are found by the host birds, who eliminate
them. The nests may or may not be appropriate based
on how the eggs develop. The amount of profit
depends on how many eggs survive in a given area.
The criterion that COA optimizes will be the place
where eggs survive. In order to increase the
likelihood that their eggs will survive, cuckoos
search for the best place to deposit them. Upon
hatching into adult cuckoos, the eggs form many
communities. Every civilization has a characteristic
place to reside, hence the ideal home for all
civilizations is wherever cuckoos end up in other
cultures. They then relocate to the ideal location.
They'll make their home wherever the best
circumstances exist. The ideal habitat, or egg-laying
radius, is calculated using the number of eggs
deposited by each cuckoo and its distance from the
objective. The cuckoo then deposits eggs in
impromptu nests by using her egg-laying region.
This process keeps going until the majority of cuckoo
populations gather in the most advantageous spot
[25, 26].

In N4, dimension optimization issue, a habitat is
an assembly of 1 x N,,,, displaying the current
habitat of the cuckoo. The following is an
explanation of this array:

Habitat = [X;, X5, .., Xy, ] ©)

It seems that the wvalue of each variable,
X1,X3, ., Xn,,,. 1S @ number in floating points. By
analyzing the profit function f, at a habitat of
(X1, X2, ..., Xy, ) One may determine the profit of a
certain habitat. Therefore

Profit = f,(habitat)

= fo(X0 Xa o Xy, ,) )
It is evident that COA is a group of algorithms
designed to optimize a profit function. The following
profit function may be easily optimized to employ
COA in cost-minimization scenarios:
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Profit = —Cost(habitat) ®)
= —f(X1, X2, .. Xn,,.)

A candidate habitat matrix of dimensions N, X

N, 41 Created to start the optimization process. After
then, it's expected that each of these initial cuckoo
houses would contain a certain number of eggs that
were created at random. Those figures represent the
lowest and upper boundaries of the total number of
eggs attributable to each cuckoo at specific iterations,
as each cuckoo typically lays between five and
twenty eggs. The "Egg Laying Radius (ELR)," which
is inversely related to the total number of eggs the
cuckoo has deposited thus far and the varying limits
of vary; and vary,,, is another attribute of authentic

cuckoos. ELR is defined as follows:
ELR
Number of cuckoos eggs
=ax 9)
Total number of eggs
X (vary; — varyy,,)

According to [25], a is an integer that is meant to
control the ELR's maximum value. At first, every
cuckoo in her ELR scatters its eggs into many host
bird nests.

2.3 Multi-verse Optimization (MVO)
According to Mirjalili, et al. [27], Wormholes, white
holes, and black holes are the three main pillars of
the multiverse theory in physics, and they are the
mathematical models that are created using the MVVO
approach. Let each variable in the optimization
problem reflect one of the following universes with
respect to laws. A variation in the rate of inflation
affects some but not all items in the universe through
wormholes that lead to the ideal state. In universes
with higher inflation rates, objects are more likely to
pass via white holes, and in those with lower inflation
rates, through black holes. Higher inflation rates are
linked to white holes, whereas lower inflation rates
are linked to black holes. The MVO algorithm is
described as follows in brief:

Step 1: Set the universe's initial values, as well as the
maximum repetitions, maximum iterations, interval
variable [Ib, ub], and universe location.

Step 2: To locate a white hole based on the
inflation rate of the universe, use a roulette wheel
selection approach.

xlj = {x,{ rl

. (10)
<NI(U)x} r1=NIU))
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where r1 is a randomly generated number from the
interval [0, 1]; U; is the i-th universe; xl.’ is the i-th
universe's j-th parameter; x,’c is the k-th universe's j-
th parameter selected by the roulette process; and
NI(U;) is the universe's normative inflation rate.
Step 3. Time for a wormhole existence probability
(WEP) calculation, a travel distance rate (TDR)
update, and a boundary check.

WEP
. max —min (11)
=min+1- (—)
L
1
[p
TDR=1-— (12)
Lp

The numbers | for the current iteration, L for the
maximum number of repetitions, and p for the
accuracy of the exploitation stand for the highest and
lowest WEP values, respectively. In the MVO
model, low WEP and high TDR encourage
exploration and the avoidance of local optima,
whereas high WEP and low TDR enhance
exploitation [28].

Step 4: Find the current inflation rate in the
universe. The cosmos shifts if the rate of inflation
rises over its present value. In all other
circumstances, the cosmos seems to continue
existing.

Step 5: Update the position of the universe as
provided by Equation (13).

X; + TDR ((ub; — lby)r4 + lb;) 73 < 0.5
X; —TDR ((uby — lby)r4 +1b;) 132 05 72 <WEP ;4
x] 2 = WEP(i)

15

J—
x; =

(13)

where r2, r3, and r4 are random values chosen from
the range [0, 1]; ub; is the j-th variable's upper
bound; and [b; is its lower bound. Where X; is the j-
th parameter of the best universe at that instant.
Step 6: criteria for termination. If the prerequisites
for termination are met, the required output is
produced. If not, an extra iteration is performed and
Step 2 of the procedure is followed.

2.4  League Championship Algorithm (LCA)

Similar to other evolutionary algorithms, the LCA
operates on a population of people [29]. As a result,
during the initialization stage, a league (population)
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of L (the league size) teams (solutions) is formed,
and their playing characteristics (fitness values) are
evaluated. Every team will have n players if we
analyze a function with n variables, where n is the
number of variables. For now, the setups that work
well for the teams make advantage of the starting
settings. The competition is the next stage.
According to the league schedule, the clubs play each
other in pairs for S x (Z — 1) weeks, where S is the
number of seasons and t is the week. Regarding the
results of the games or matches between teams | and
J, there is no tie. Wins and losses are shown for each
outcome. The performance of each squad determines
this. Every team designs a new configuration during
the recuperation time based on what performed well
in the play of the previous week and what is currently
its finest formation. The selecting process in LCA is
voracious. It swaps out the current configuration for
the best one with a more powerful and efficient one.
Stated otherwise, if the new configuration is now the
best choice for the team, it should be considered the
fittest one (i.e., the best response found thus far for
the i-th member of the population). Upon meeting the
halting criterion, the algorithm terminates.

A few terms that we used in our explanation of the
LCA technique need to be defined and thoroughly
explained. Creating the league schedule and figuring
out if the team is winning or losing are two of these
concepts. Further information on these ideas is
provided in the sections that follow.

24.1  Generating a league schedule

Creating a schedule containing every game for every
season is the first step in creating the illusion of a
championship setting, complete with teams vying for
supremacy. Throughout the season, each team plays
each other once in a round-robin style. Since L/2
matches would be played in parallel during each of
the (L - 1) weeks, if there are L (an even number of
teams), there will be L (L - 1)/2 matches (if L is an
odd number, there would be L weeks with (L - 1)/2
matches and one team would play no games during
any given week). After that, the championship lasts
for S more seasons [29].

2.4.2  Determining winner/loser

Each squad participates in the LCA and plays against
other squads; no team may win or lose a game. After
a game, a team's result is determined stochastically
using the playing strength criterion, as long as the
likelihood of a team winning is commensurate with
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its fit level. According to Kashan [29], the degree of
fit is determined by the distance with an ideal
reference point and is associated with the team's
playing strength.

2.5 Evaporation Rate Water Cycle Algorithm
(ERWCA)

Sadollah, et al. [30] introduced a novel search
strategy called the evaporation rate-water cycle
algorithm (ER-WCA). This approach modifies the
WCA technique as originally proposed [30]. Two
instances of how nature influences the WCA
algorithm are the water cycle and water flowing
toward the ocean. During the hydrological cycle,
water from streams evaporates and is used by plants
for photosynthesis. Once the vapor enters the
atmosphere, it condenses as clouds.

Depending on the weather, water re-enters the earth
in a variety of states. According to this system, rivers
are excellent persons, whilst other water flows are
referred to as streams. In the event when K represents
the issue's magnitude, the potential streams are
X1,%3, .., X . The initial population is created at

random, as seen below:
I Sea

Rivery

River,

Total population = Strea'mKsm

Streamy_
: (14)
Stream,(pop
S B 7
| x? x2 . xE
K K, K.
pop pop pop
1 xZ xN
'1";')1’_
res Hg.
Stream S
J'Q.?
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where the swarm size is indicated by K,,,. The
intensity of flow for each approach is computed
using Equation 14:

Cost; = f(x{,xé', ,x,‘() I

=1,2, ., Kpop

(15)

Rivers and oceans, K, are chosen from the most
accomplished individuals. The residual population
that may flow into rivers or the sea is shown by the
symbol Kgireams- The amount of water drawn from
the sea or river varies depending on the strength of
the flow. The approximate distribution of streams to
each river and the sea is shown by the bellows:
C, = Cost,, — Costhr+1 n

=1,2,.., K (16)

NS,, = round{ a7)

n
Koy X KSt‘reams
n=1%n

The number of streams flowing toward a certain river
or sea is indicated by the symbols NS,,. The fitness
function is created to distribute  streams
proportionally between rivers and the sea since more
streams flow into the sea. In the natural world, certain
streams unite to create new rivers.

Figure 3 illustrates the path a stream travels in the
direction of a river when there is only one sea
andKj,_, rivers among a population of K,,,, people.
Additional  information on the proposed
methodology may be found in related papers [31].

Figure 3. The direction in which a stream flows toward a particular river [30].
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2.6  Stochastic Fractal Search (SFS)
An innovative swarm-based strategy for determining
the ideal PID controller parameter values is the
stochastic fractal search method [32]. SFS aims to
increase the convergence rate by promoting
information sharing across all group points, in
contrast to its initial iteration, fractal search. To find
the least value of the cost function, the method,
which primarily makes use of the mathematical
underpinnings of fractal theory, passes through the
diffusing and upgrading stages. The former process,
which manages the search space, is comparable to the
fractal search in that it generates new particles
around each particle's current position using the
Gaussian walk statistical approach. In the next stage,
two statistical techniques are used only for SFS as an
upgrading technique to improve issue domain
research. This phase serves to maintain the
algorithm's exploratory property by adjusting a
point's position based on the positions of other group
points. It also makes information transfer between
particles easier.
The first statistical method impacts each particle
vector index, whereas the second statistical approach
affects all points.

1. The first statistical process
The first step involves ranking particles based on
their function values of fitness using the following
equation:

_rank(PL-)

= 18
a; NP ( )

The number of particles in the group is denoted
by NP in this instance, and the rank of the i-th
particle is indicated by rank(P;). For every point P;
in the system, if B, <g, the j-th component of P; is
upgraded using Equation (19); if not, the
corresponding component remains unchanged.

P{() = Pu()) — e(Pu()) = Pi(1)) (19)

The newly updated position of P; in this equation is
denoted by P;. Random points from the group are B,
and P, whereas ¢ is an accidental integer in the
interval [0, 1].

2. The second statistical process
Generally speaking, this technique aims to improve
group variety over the original procedure by altering
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the conditions of the chosen point while accounting
for the placements of other points. This is
accomplished by evaluating the requirement P; <e,
and ranking all of the points earned in the first phase
using Eq (18). According to Eq. (20), if the condition
is met, the existing state of P; is improved. If not, it
will persist into the next generation unchanged.

P’y =P —&(By — Pyest) if £<05 (20)
P =P —e(PL—P) if £€>05 (1)

In SFS, the variables B,, and P, represent two
randomly selected points from the initial process, and
P'; denotes the modified state of P;. Additionally,
Pyes¢ indicates the position of the best point, and the
accidental number ¢ is between 0 and 1. After every
statistical process, SFS uses a greedy selection
mechanism to compare the fitness values of the old
and improved solutions and selects the option that is
more fit.

3  Established database

Data on energy use that is gathered every fifteen
minutes is used in this investigation. After that,
prediction models are created using machine learning
techniques. The data was supplied by the DAEWOO
Steel Co. Ltd. in Gwangyang, South Korea. It
produces iron and steel plates in addition to a range
of coils. Energy use data is kept in a cloud-based
system. Statistics on the sector's energy use are
available on the Korea Electric Power Corporation
website (pccs.kepco.- go.kr). These statistics include
computations and representations of daily, monthly,
and annual data. Smart meters are used to measure
the energy consumption of machine equipment used
in the steel industry. These meters also collect and
store additional energy use data in a cloud-based
system. After demand was forecasted via data
analytics techniques, energy consumption rules were
improved and modified. The primary focus of this
inquiry is the energy data (in Kwh) that is recorded
for the industry every 15 minutes. The 15-minute
reporting interval was used to track abrupt variations
in energy consumption. R was used to analyze each
and every piece of data [33]. The data covers the
entire year (12 months). Most studies on energy
consumption used meteorological criteria to forecast
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energy use based on the influence of weather
components [34]. Because of the open architecture
and lack of heating and cooling systems in the steel
sector, weather had minimal effect on the patterns of
energy use in this research. The output variables and
inputs by the output of the dataset are shown in
Figure 4. Additional details like the day of the week,
the period or weekday position, and the number of
seconds till midnight for each day are provided by
the date/time variable (NSM). The process of
developing new features from pre-existing variables
is known as feature engineering. Increasing the
effectiveness of statistical learning algorithms is the
aim of this.

The dataset was randomly divided into 70% training
and 30% testing subsets, a common convention in
machine learning to ensure that the model
generalizes well and avoids overfitting. This ratio
allows the model sufficient exposure to data for
learning patterns while reserving enough unseen data
for robust performance evaluation. The independent
variables were selected based on their demonstrated
relevance in prior literature and their direct influence
on energy consumption in steel production.
Variables such as [list the actual variables] reflect
operational, environmental, and process-related
factors that contribute significantly to energy usage.
These variables were also selected due to their
availability and consistency in the public dataset
obtained from the South Korean industrial report.
Although the authors are based in Iraq, the dataset
used in this study originates from publicly available
South Korean industrial energy reports. The data
were retrieved and validated from official sources,
ensuring their reliability and relevance. The study
does not involve direct experimentation or
confidential national data; it is solely based on open-
access datasets intended for research and policy
analysis. Proper citation and verification of the data
source have been ensured.
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a) Leadlng/Lagglng Current Power Factor/
Usage(kWh)

b) Leadmg/Laggmg Current Power Factor/
Usage(kWh)

¢) CO2 (Ppm)lof second from midnight(s)/(KWh)
Figure 4: Details on the inputs and outputs.

4  Results and discussion

To find the ideal configuration, a variety of networks
with varying numbers of layers and kinds of neurons
have been built. The accuracy of the models is also
impacted when a standard MLP's layer and neuron
counts are changed. Using a feed-forward back-
propagation approach and an average of five hidden
units determined by the RMSE and R? metrics, the
optimal network was built. Early optimization results
are the starting point for many optimization
approaches. The model with the highest score
provides the best prediction network. Interestingly,
the model's predicted accuracy was used to decide
ranking. For instance, the chosen model receives a
higher score when the RMSE decreases. The score
and the R? rise in unison. For this reason, the
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following sections make use of the results of these
networks. The MSE fluctuations for each technique
are shown in Figure 5.

The first optimization discovery step will lay the
groundwork for further stages of optimization
methodologies. Consequently, these networks'
outputs are used in the parts that follow. As the mean
square error goes down, structures are more
consistently correct (MSE). Regression and
classification issues may be more accurately solved
with the help of the anticipated values of the
suggested model. Figure 5 shows the mean square
error (MSE) variations across several cycles of the
energy consumption prediction system estimations
for the combined COA, MVO, LCA, ERWCA, and
SFS designs. COA, MVO, LCA, ERWCA, and SFS
have decided that the best options are 200, 250, 200,
250, and 400 based on this data (N,,p).
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Figure 5. MSE variance amongst techniques.
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4.1 Assessing Statistical Accuracy

An item or person is assigned a score by a scoring
system according to their qualities or performance.
Different ranking strategies may be required for
different goals and circumstances. A common way is
the total score rank methodology, which involves
adding up the points for every item or individual and
assigning a score based on their cumulative score. An
alternative method (a term not frequently employed)
is the color-scoring ranking system. That may,
however, be a reference to a color-coded, level-
based, classified rating system. For each grading
level, the best hybrid designs are identified using R?
and RMSE (Table 1-5). The best hybrid strategy for
energy consumption in industrial cities uses swarm
populations of 200, 250, 200, 250, and 400 to train
and assess the results of predictive modeling (i.e.,
How well the program was able to forecast energy
usage). It also shows how closely the outcomes of
step two match those of phase one. Tables 1-5
display the network findings for the various COA—
MLP, MVO-MLP, LCA-MLP, ERWCA-MLP, and
SFS—MLP models.

Tables 1 through 5 present the outcomes of utilizing
various combinations of meta-heuristic algorithms
on Multilayer Perceptron (MLP) models, namely
COA-MLP, MVO-MLP, LCA-MLP, ERWCA-
MLP, and SFS-MLP, in order to predict energy
consumption in a small-scale steel firm in South
Korea. Each table provides a comprehensive picture
of the models’ performance across a range of
population sizes by displaying metrics such as R-
squared (R?) and Root Mean Squared Error (RMSE)
over the training and testing datasets. Techniques for
ranking and grading offer a comparative assessment
of how well the algorithms produce accurate
estimates of energy usage. The designs that scored
the highest overall for ERWCA-MLP and SFS-MLP,
respectively, had 400 and 250 populations, indicating
that they are more predictive. These results provide
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valuable guidance on how to enhance meta-heuristic
algorithms to more precisely predict energy use in
the context of small-scale steel enterprises, which in
turn supports the development of smart city
infrastructure and sustainable industrial practices.
The COA-MLP model demonstrated its optimal
performance when configured with a population size
of 200. During training, the model achieved a
remarkably low Root Mean Square Error (RMSE) of
3.76348, indicating a high precision in predicting
energy efficiency. The corresponding R? value for
training was 0.99369, reflecting a strong correlation
between the predicted and actual values. When
evaluated on the testing dataset, this configuration
continued to showcase excellence with an RMSE of
3.85332 and an R? of 0.99324. These results suggest
that a population size of 200 led to a well-tuned
COA-MLP model, effectively capturing the
underlying patterns in the data and generalizing to
unseen instances. Conversely, the worst-performing
configuration for COA-MLP was observed when the
population size was set to 450. Despite having a
larger population, this configuration exhibited
challenges in accurately modeling the energy
efficiency of the steel production process. During
training, the model struggled, yielding a higher
RMSE of 5.62769 and a lower R? of 0.98583,
signifying a less effective fit to the training data. This
trend persisted when applied to the testing dataset,
where the RMSE increased to 5.68331, and the R?
decreased to 0.98524. These results indicate a
diminished ability of the COA-MLP model to
generalize to new, unseen data, possibly due to
overfitting or lack of convergence with the larger
population size. The population size of 200 emerged
as the most suitable choice for the COA-MLP model,
providing a balance between complexity and
generalization. Conversely, the larger population
size of 450 led to a suboptimal model performance,
emphasizing the importance of parameter tuning in
meta-heuristic algorithms like COA when applied to
MLP structures.

Table 1. The network results for various COA-MLP pairings.

Population Training dataset Testing dataset Scoring
size Total Score Rank
RMSE R? RMSE Training Testing
50 4.74548 0.98994 4.85438 0.98925 4 4 4 4 16 7
100 4.65071 0.99034 4.69975 0.98993 5 5 5 5 20 6
150 4.98577 0.98889 5.08978 0.98818 3 3 3 3 12 8
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200 3.76348 0.99369 3.85332 0.99324
250 5.31614 0.98736 5.33573 0.98700
300 4.04138 0.99272 4.11705 0.99228
350 4.40944 0.99132 4.48229 0.99084
400 3.90806 0.99319 3.96893 0.99283
450 5.62769 0.98583 5.68331 0.98524
500 3.77750 0.99364 3.86867 0.99319
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The MVO-MLP model demonstrated its superior
performance when configured with a population size
of 250. During training, this configuration achieved
an impressive RMSE of 2.86040, indicating a high
level of precision in predicting energy efficiency.
The corresponding R? value for training was
0.99636, reflecting a strong correlation between the
predicted and actual values during the training phase.
When evaluated on the testing dataset, this
configuration continued to exhibit excellent
performance with an RMSE of 2.94209 and an R? of
0.99607. These results suggest that a population size
of 250 led to a well-optimized MVVO-MLP model,

effectively capturing the underlying patterns in the
data and generalizing to new instances. Contrary to
the initial assessment, it appears that a population
size of 200 is considered the worst-performing
configuration for MVO-MLP. The RMSE for
training was 3.91689, and the R? was 0.99302. When
applied to the testing dataset, the RMSE increased to
3.91689, and the R? decreased to 0.99302. These
results indicate that a population size of 200 led to a
suboptimal MVO-MLP model performance,
potentially due to convergence issues or insufficient
exploration of the solution space.

Table 2. The network results for various MVO-MLP pairings.

POp:ilzaetion Training dataset Testing dataset Scoring Total Score Rank
RMSE R? RMSE R? Training Testing
50 3.80074 0.99356 3.87873 0.99315 2 2 2 2 8 9
100 3.58083 0.99429 3.63533 0.99399 3 3 3 3 12 8
150 3.54821 0.99439 3.61757 0.99405 4 4 4 4 16 7
200 3.82472 0.99348 3.91689 0.99302 1 1 1 1 4 10
250 2.86040 0.99636 2.94209 0.99607 10 10 10 10 40 1
300 3.23848 0.99533 3.32938 0.99496 7 7 7 7 28 4
350 3.32624 0.99507 3.39047 0.99477 6 6 6 6 24 5
400 3.46003 0.99467 3.52017 0.99436 5 5 5 5 20 6
450 3.16521 0.99554 3.23368 0.99525 8 8 8 8 32 3
500 3.06791 0.99581 3.15861 0.99546 9 9 9 9 36 2

The LCA-MLP model performed exceptionally well
with a population size of 200. During training, this
configuration achieved an RMSE of 3.88871 and an
R? of 0.99326, indicating a high degree of accuracy
in predicting energy efficiency. When evaluated on
the testing dataset, the model's performance
remained robust with an RMSE of 3.97548 and an R?
of 0.99281. These results suggest that a population
size of 200 led to a well-optimized LCA-MLP model,
demonstrating its ability to generalize effectively to
new data. Contrarily, a population size of 50 appears
to be the least effective for the LCA-MLP model.

The model trained with a population size of 50
exhibited higher errors, with an RMSE of 4.51894
and an R? of 0.99089 during the training phase. These
issues persisted when the model was tested on new
data, resulting in an RMSE of 4.59644 and an R? of
0.99037. These outcomes indicate that a smaller
population size of 50 led to suboptimal training and
testing performance for the LCA-MLP model. The
model may have struggled to capture the complexity
of the underlying patterns in the data, resulting in
reduced predictive accuracy.

Table 3. The network results for various LCA-MLP pairings.
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i Training dataset Testing dataset Scorin
Popsuilzitlon g J g Total Score Rank
RMSE R? RMSE R? Training Testing
50 451894 0.99089 4.59644 0.99037 1 1 1 1 4 10
100 4.19568 0.99215 4.27880 0.99166 8 8 8 8 32 3
150 4.21899 0.99206 4.35842 0.99135 7 7 6 6 26 4
200 3.88871 0.99326 3.97548 0.99281 10 10 10 10 40 1
250 4.05630 0.99266 4.18441 0.99203 9 9 9 9 36 2
300 4.47348 0.99107 4.56618 0.99050 3 3 3 3 12 8
350 4.23930 0.99198 4.29066 0.99161 6 6 7 7 26 4
400 4.25251 0.99193 4.40533 0.99116 5 5 5 5 20 6
450 4.48317 0.99103 457893 0.99044 2 2 2 2 8 9
500 4.27031 0.99186 4.41622 0.99111 4 4 4 4 16 7
The ERWCA-MLP model achieved its peak ERWCA-MLP model. The model trained with this

performance with a population size of 250. During
training, this configuration demonstrated an
impressive RMSE of 2.03778 and an R? of 0.99815,
showcasing high accuracy in predicting energy
efficiency. When evaluated on the testing dataset, the
model's excellence persisted with an RMSE of
2.09627 and an R? of 0.99800. These results indicate
that a population size of 250 led to a well-optimized
ERWCA-MLP model, displaying strong
generalization capabilities. In contrast, a population
size of 50 appears to be the least effective for the

smaller population size exhibited higher errors, with
an RMSE of 3.11111 and an R? of 0.99569 during the
training phase. These issues persisted when the
model was tested on new data, resulting in an RMSE
of 3.19425 and an R? of 0.99536. These outcomes
suggest that a smaller population size of 50 led to
suboptimal training and testing performance for the
ERWCA-MLP model. The model may have
struggled to capture the complexity of the underlying
patterns in the data, resulting in reduced predictive
accuracy.

Table 4. The network results for various ERWCA-MLP pairings.

Popu_lation Training dataset Testing dataset Scoring Total Score Rank
Slze
RMSE R? RMSE R? Training Testing

50 3.11111 0.99569 3.19425 0.99536 1 1 1 1 10
100 2.76610 0.99659 2.85663 0.99629 2 2 2 2 9
150 2.42653 0.99738 2.48403 0.99720 5 5 5 5 20 6
200 2.64471 0.99689 2.70127 0.99668 4 4 4 4 16 7
250 2.03778 0.99815 2.09627 0.99800 10 10 10 10 40 1
300 2.65120 0.99687 2.76177 0.99653 3 3 3 3 12 8
350 2.36080 0.99752 2.37750 0.99743 6 6 8 8 28 4
400 2.28214 0.99768 2.38845 0.99741 8 8 7 7 30 3
450 2.32085 0.99760 2.41863 0.99734 7 7 6 6 26 5
500 2.10771 0.99802 2.21501 0.99777 9 9 9 9 36 2

The SFS-MLP model demonstrated its optimal
performance with a population size of 400. During
the training phase, this configuration achieved a
remarkable RMSE of 2.50700 and an R? of 0.99720,
highlighting its ability to accurately predict energy
efficiency based on the given features. Upon

evaluation on the testing dataset, the excellence of
the model persisted with an RMSE of 2.59167 and an
R? of 0.99695. These results indicate that a
population size of 400 led to a well-tuned SFS-MLP
model, showecasing strong generalization
capabilities. Conversely, a population size of 50


https://aisesjournal.com/article-1-23-en.html

[ Downloaded from aises ournal.com on 2026-02-04 ]

Sarah A. Alabbas

appears to be the least effective for the SFS-MLP
model. The model trained with this smaller
population size exhibited higher errors, with an
RMSE of 2.97527 and an R? of 0.99606 during the
training phase. These issues persisted when the
model was tested on new data, resulting in an RMSE
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of 3.04438 and an R? of 0.99579. These outcomes
suggest that a smaller population size of 50 led to
suboptimal training and testing performance for the
SFS-MLP model. The model may have struggled to
adequately capture the underlying patterns in the
data, resulting in reduced predictive accuracy.

Table 5. The network results for various SFS-MLP pairings.

Popu_lation Training dataset Testing dataset Scoring Total Seore Rank
Slze
RMSE R? RMSE R? Training Testing

50 2.97527 0.99606 3.04438 0.99579 1 1 1 1 4 10
100 2.92716 0.99619 3.00053 0.99591 3 3 3 3 12 8
150 2.81352 0.99648 2.89390 0.99619 4 4 4 4 16 7
200 2.63799 0.99690 2.72825 0.99662 7 7 6 6 26 4
250 2.73470 0.99667 2.81791 0.99639 5 5 5 5 20 6
300 2.95066 0.99612 3.00906 0.99588 2 2 2 2 8 9
350 2.64454 0.99689 2.69327 0.99670 6 6 7 7 26 4
400 2.50700 0.99720 2.59167 0.99695 10 10 10 10 40 1
450 2.53216 0.99715 2.60059 0.99693 9 9 9 9 36 2
500 2.59696 0.99700 2.67468 0.99675 8 8 32 3

The performance of the model is evaluated in the
second stage by comparing the anticipated values of
the hybrid design with the actual data. This study
uses the R? statistic, which is a commonly used
metric for assessing the efficacy of hybrid designs.
Researchers may get more understanding by
comparing projected values with actual data to assess
the model's accuracy and capacity to capture dataset
variation. An important factor influencing a binary
classifier system's diagnostic performance is the
discriminating threshold selection. Figure 6-10
provides a graphical picture of how changing this
threshold affects the model's capacity to discriminate
between positive and negative categories. Higher R?
values suggest that the model performs better when
it comes to group differentiation. The structural R?
plots of the hybrid are best-fit. These charts show

how well the model performs in relation to several
distinguishing factors. Using the suggested hybrid
COA-MLP, MVO-MLP, LCA-MLP, ERWCA-
MLP, and SFS-MLP models as a basis, the first and
most important stage is to identify the optimal
prediction model. During the iteration phase, ideal
population sizes—200, 250, 200, 250, and 400—are
selected, highlighting the necessity of fine-tuning
these parameters to improve prediction accuracy.
This all-inclusive method evaluates the hybrid
models' prediction power and helps choose the best
design for enhanced diagnostic performance based
on the particular dataset and application. Iteration
makes models more helpful for estimating steel
energy usage by ensuring that they are selected and
improved for best outcomes.
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Figure 6. The accuracy findings for best-fit architectures for the COA-MLP model.
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Figure 7. The accuracy findings for best-fit architectures for the MVO-MLP model.
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Figure 8. The accuracy findings for best-fit architectures for the LCA-MLP model.
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Figure 9. The accuracy findings for best-fit architectures for the ERWCA-MLP model.
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Figure 10. The accuracy findings for best-fit architectures for the SFS-MLP model.

4.2 Error analysis

Figures 11-15 display the frequency distribution of
the best-fitted structures for COA-MLP, MVO-
MLP, LCA-MLP, ERWCA-MLP, and SFS-MLP.
The findings from the training and testing datasets
show an extraordinarily high degree of agreement
between the computed and observed energy
consumption indicators. The consistency of the data
indicates that the models are effective in accurately
forecasting the energy consumption in industrial
environments. The study's findings demonstrate the
high degree of agreement between the estimated and
observed energy usage metrics. The training and
testing datasets are used to produce them. This result
highlights the models' value in providing accurate

estimates of industrial cities' energy usage. The
methods employed by the SFS-MLP, ERWCA-
MLP, LCA-MLP, COA-MLP, and MVO-MLP
models collectively contribute to the reliable and
accurate estimation of energy consumption.
Surprisingly  strong agreement between the
computed and observed data suggests that these
models accurately capture the underlying dynamics
and patterns of energy use. This shows that the neural
network models and optimization approaches
utilized in this work provide a dependable method for
producing accurate predictions of energy use. The
results validate the utility of the proposed models and
add to the growing body of knowledge about
effective  methods for  estimating  energy
consumption in industrial settings.
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Figure 11. The ideal frequency for the COA-MLP method.
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Figure 15. The ideal frequency for the SFS-MLP method.

4.3  Measurement of energy consumption using
MLP

ERWCAMLP with a swarm size of 250 stands out
with the highest R? scores for both training (0.99815)
and testing (0.99800) datasets. This indicates a
superior ability to explain the variance in the data and
make accurate predictions. MVO-MLP, utilizing a
swarm size of 250, achieved a notable balance
between training and testing performance, exhibiting
an R? of 0.99636 in training and 0.99607 in testing.
This suggests good generalization capabilities of the
model to new, unseen data. SFSMLP, configured
with a population size of 400, achieved the lowest
RMSE on the testing dataset (2.59167). This
indicates that the model's predictions were, on
average, closer to the true values during the testing

phase compared to other algorithms. COAMLP and
LCAMLP, both with a swarm size of 200, exhibit
higher RMSE values in training compared to other
algorithms. This suggests that these models may face
challenges in accurately fitting the training data. The
scoring metrics (based on RMSE and R?) and the
total score provide a comprehensive evaluation of
each algorithm's overall performance.
ERWCAMLP, with a total score of 20, secures the
top rank, emphasizing its superiority in optimizing
energy efficiency. This comparative analysis aids in
understanding the strengths and weaknesses of each
meta-heuristic algorithm in the context of energy
efficiency optimization for steel production. It
provides valuable insights for selecting the most
effective algorithmic approach based on specific
requirements and priorities.

Table 6. The COA-MLP, MVO-MLP, LCA-MLP, ERWCA-MLP, and SFS-MLP structures' network outcomes

Methods Swarm Training dataset Testing dataset Scoring Total
size Score Rank
RMSE R? RMSE R? Training  Testing
COAMLP 200 3.76348  0.99369  3.85332 0.99324 2 2 92 3 4
MVOMLP 250 2.86040  0.99636 2.94209 0.99607 3 3 3 3 12 3
LCAMLP 200 3.88871  0.99326 3.97548 0.99281 1 1 1 1 4 5
ERWCAMLP 250 2.03778  0.99815 2.09627 0.99800 5 5 5 5 20 1
SFSMLP 400 2.50700  0.99720 2.59167 0.99695 a 4 4 4 16 P

4.4  Taylor Diagrams

In meteorology and climate research, the Taylor
diagram—named for Karl E. Taylor—is a graphical
tool used to assess how well many datasets match

with a reference dataset. It is frequently used to
evaluate the performance of model outputs on
observational data, including climate models and
numerical simulations. Visual representations of
each dataset's standard deviation, correlation, and
centered root mean square difference (RMSD) with
respect to the reference dataset are provided. This
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image can assist researchers in identifying the most
sophisticated datasets since it provides a thorough
overview of model performance across several
domains. For evaluating and comparing models,
Taylor diagrams are useful tools. They might also
help in the model's development by drawing
attention to regions that require work. They conduct
a comprehensive analysis of the model's performance
in terms of correlation, variability, and overall
agreement with observational data. When it was first
displayed, it was Taylor [35] provided a visual
depiction of the degree to which an observation and
a pattern or set of patterns are comparable. The
standard deviations, the centered root-mean-square
difference, and the similarity score between the two

Al in Sustainable Energy and Environment, Published Online

patterns are obtained from the correlation. These
graphics are very helpful for analyzing multi-
component complicated models or assessing how
well different models perform, as the IPCC has
shown [36]. The Taylor diagram in Figure 16
compares how well the model can replicate the
regional distribution of the yearly average
precipitation in the present datasets. We conducted a
statistical analysis using four labeled models. The
position of each label on the map shows how well the
predicted precipitation pattern of the model matches
the observed data. For the COA-MLP, MVO-MLP,
LCA-MLP, ERWCA-MLP, and SFS-MLP, the
pattern correlation coefficients are about 0.99.
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Figure 16. The Taylor diagram shows the energy consumption of the industrial metropolis.

45 Discussion

The pursuit of energy efficiency in steel production
demands cutting-edge techniques to optimize Multi-
Layer Perceptron (MLP) structures effectively. Our
study delves into five distinct optimization methods,
each contributing uniquely to the challenge. COA-
MLP exhibited superior training and testing results
with a swarm size of 200. This configuration
achieved a balance between accuracy and
computational efficiency, making it an optimal
choice for practitioners aiming for competitive
results without sacrificing computational resources.
MVO-MLP emerged as a robust performer,
showcasing outstanding training and testing
accuracy with a swarm size of 250. This method is

particularly suitable for scenarios where achieving
high precision in energy efficiency predictions is a
top priority. LCA-MLP, while demonstrating
competitive  results, achieved a balanced
performance with a swarm size of 200. This method
could be preferred in situations where a trade-off
between accuracy and computational resources is
necessary. ERWCA-MLP outshone others, securing
the top rank. Its ability to navigate the solution space
effectively and achieve high accuracy in both
training and testing phases positions it as a top
contender for applications demanding
uncompromised precision. SFS-MLP demonstrated
exceptional efficiency when configured with a larger
swarm size (400). This suggests that, when
computational resources allow, incorporating the
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sequential ~ forward selection method can
significantly boost the overall performance of MLP
models. The selection of an optimization method
depends on the specific goals and constraints of a
given project. COA-MLP and MVO-MLP offer
well-balanced solutions, while ERWCA-MLP and
SFS-MLP shine in scenarios prioritizing accuracy.
Practitioners  should carefully consider the
computational resources available. While ERWCA-
MLP and SFS-MLP excel in accuracy, the
computational demands may vary. Project-specific
constraints should guide the selection process. Our
study underscores the importance of a holistic
approach to optimization. Considering the trade-offs
between computational efficiency and accuracy
ensures that the chosen MLP structure aligns with the
broader goals of enhancing energy efficiency in steel
production.

5. Conclusions

This study evaluated the performance of five
metaheuristic-MLP models for predicting energy-
related outcomes using a range of population sizes.
Among them, ERWCA-MLP achieved the best
results with the lowest RMSE and highest R?
followed closely by SFS-MLP and MVO-MLP.
COA-MLP and LCA-MLP also showed reasonable
predictive accuracy but ranked lower. The results
highlight the importance of algorithm selection and
tuning (e.g., population size) in optimizing hybrid
neural models. These findings provide actionable
insights for developing accurate, efficient predictive
tools in energy-intensive industries.
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