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 Given the huge growth in urban innovation over the past 10 years, smart cities require 

rational and workable solutions for transportation, building infrastructure, 

environmental conditions, and human enjoyment. This paper presents and explores 

data-mining-based predicted energy consumption models for a small-scale, intelligent 

steel company in South Korea. Devices built on the Internet of Things (IoT) are used 

to collect and process energy use data in order to forecast. Among the data used are 

leading and following currents, carbon dioxide emissions, load kinds, reactive power, 

and power factor. The Leagues Championship Algorithm (LCA), Evaporation-rate 

Water Cycle Algorithm (ERWCA), Multiverse Optimization Algorithm (MVO), 

Cuckoo Optimization Algorithm (COA), and Stochastic Fractal Search (SFS). The 

following metrics are used to evaluate the models' predictive power: root mean square 

error, mean absolute error (MAE), and coefficient of variation (R2) (RMSE). With the 

greatest R2 values (0.99800 during testing and 0.99815 during training), the Multilayer 

Perceptron (MLP) arrangement augmented by ERWCA performs exceptionally well 

and demonstrates a strong correlation between the predicted and actual energy 

consumption. Moreover, ERWCA has the lowest RMSE, a measure of the least number 

of prediction errors (2.09627 in the testing phase and 2.03778 in the training phase). 

Comparably low RMSE values (2.59167 during testing and 2.50700 during training) 

and excellent performance in terms of R2 values (0.99695 during testing and 0.99720 

during training) also suggest that SFS could be used to improve MLP models for 

accurate energy consumption forecasts in smart city industrial buildings. These 

findings show how reliable and accurate the SFS and ERWCA energy use estimations 

are. 
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1 Introduction  

 

Rising economic growth and population expansion in 

emerging nations have resulted in an increase in 

global energy demand. It is projected that worldwide 

energy consumption would increase by around 25% 

by 2040, notwithstanding increases in efficiency 

over the last several decades [1]. According to the 

International Energy Agency (IEA) [2], demand is 

expected to rise sharply in emerging countries 

between 2017 and 2040, especially in Asia and 

Africa. According to the scenario being studied, there 

will be a 10% rise in CO2 emissions connected to 

energy. 32.6 to 35.9 gigatons, respectively. Forecasts 

indicate that CO2 emissions in developed nations will 

decline by 23 percent and rise by 27 percent in 

emerging economies. Energy use has a substantial 

impact on the environment. It has been shown that 

the Earth's ongoing warming is mostly caused by 

CO2 emissions [3, 4]. Moreover, future projections 

suggest that this upward trend will not abate. 

Therefore, the main objective of international 

political, economic, and environmental study at the 

moment is lowering CO2 emissions. To save energy 
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and improve environmental protection, new energy-

efficiency regulations are being implemented. For 

example, the present energy plan of the European 

Commission requires every member state to carry 

out a set of measures aimed at achieving a minimum 

of 20 percent energy efficiency [5]. Though many 

firms contribute to these emissions, the building and 

building construction industries account for around 

40% of global CO2 emissions and 36% of total 

energy use [6]. Research has demonstrated that a 

number of building subsectors, such as lighting, 

water heating, space heating and cooling, and others, 

have the potential to save energy in an efficient 

setting. Therefore, developing prediction models for 

energy use is more important in order to decide how 

energy limitations should be implemented. The 

forecasting problem may often be divided into three 

categories: load forecasting for the short, medium, 

and long periods, depending on the prediction 

horizon. Medium-term forecasting spans periods of 

one hour to one week, whereas short-term 

forecasting covers periods of one month to one year. 

Finally, a prediction horizon beyond a year signifies 

a prognosis for the long term. Most works 

concentrate on the short-term prediction horizon 

because of its higher accuracy than other horizons. 

These days, sensors are put in an increasing number 

of buildings to evaluate many aspects of the 

building's performance, including the electric energy 

usage that has been recorded [1]. "Smart buildings" 

are the term used to describe these types of buildings. 

Because these measurements are reusable, they are a 

valuable source of historical data that can be 

organized into time series and used to predict the 

future energy requirements of the structures [1]. 

Effective energy consumption prediction models 

using hybrid ANN meta-heuristic algorithms are 

essential for cost-effective energy optimization and 

consumption reduction in smart city industrial 

buildings [7]. These models employ machine 

learning and artificial intelligence techniques to 

estimate and control energy usage for non-residential 

buildings, with a focus on improving prediction 

accuracy [8]. Artificial neural networks (ANNs) 

have been shown to be an excellent way to control 

building energy use, especially when data collected 

over long periods of time is used [9]. Moreover, it 

has been proposed that deep learning approaches be 

used to solve low accuracy and overfitting issues, 

particularly when working with large datasets [10]. 

By utilizing data-driven machine learning techniques 

and optimization tactics, these models might be 

further enhanced to boost prediction reliability and 

accuracy [11]. Generally speaking, creating 

trustworthy energy consumption projection models 

is necessary to ensure that industrial buildings in 

smart cities satisfy sustainability and energy 

efficiency requirements. 

Machine learning techniques are increasingly being 

used to predict energy usage in industrial cities, 

particularly in smart buildings that have sensors 

monitoring every element of the building's 

functioning, including the use of electric energy [1]. 

These measurements provide useful historical data 

that may be used to anticipate the buildings' future 

energy usage and build time series [1]. Energy 

consumption projection models are essential for 

smart city industrial buildings to achieve 

sustainability and energy efficiency standards [8]. 

Machine learning algorithms employ historical data 

to estimate and manage the amount of energy 

consumed by non-residential buildings, with a focus 

on improving forecast accuracy [10]. Moreover, it 

has been proposed that deep learning approaches be 

used to solve low accuracy and overfitting issues, 

particularly when working with large datasets [11]. 

By utilizing data-driven machine learning techniques 

and optimization tactics, these models might be 

further enhanced to boost prediction reliability and 

accuracy [12]. In general, to reduce costs and 

increase energy efficiency for smart city industrial 

buildings, precise models for estimating energy use 

must be developed [7]. 

Recent studies have focused on the use of machine 

learning to predict energy usage in various industrial 

scenarios. As an illustration, V E, et al. [13] 

recommended and looked into predicted energy 

consumption models for a sophisticated small-scale 

steel mill in South Korea that are based on data 

mining. Energy consumption data is collected by 

IoT-based systems and used for forecasting. Reactive 

power, carbon dioxide emissions, leading and 

following current power factor, and different loads 

are the data sets that are employed. The five 

statistical methods listed below are employed to 

predict energy consumption: Classification, generic 

linear regression, and regression trees The radial 

basis kernel, CUBIST, and K nearest neighbors make 

form a support vector machine. V E, et al. [13] shown 

that the best outcomes with the lowest error levels are 

produced by the CUBIST model. This model may be 

used to create structural designs that are energy-

efficient, which will help with policy formation and 

energy consumption optimization in smart cities. 
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Chahbi, et al. [14] described a brand-new machine 

learning (ML) technique for figuring exactly how 

much energy commercial buildings use. It draws 

attention to a trade-off between the interpretability 

and performance of ML models, which are crucial 

factors to take into account while creating ML-based 

energy prediction. The case study that predicts 

energy consumption in the steel industry 

demonstrates the applicability of the recommended 

approach. Chahbi, et al. [14] shown that the 

permutation feature importance helps experts grasp 

the model's findings and that the Random Forest (RF) 

model produces the best prediction results for the 

steel industry. To ascertain the essential components, 

Ye, et al. [15] employed a data-driven random forest 

(RF) based approach to explore the relationship 

between building energy usage and building-block-

level building-oriented characteristics. The dataset of 

Taipei City comprised 24,764 buildings in 881 city 

blocks. The RF model outperforms other machine 

learning models, including logistic regression, k-

nearest neighborhood, support vector machines, and 

decision tree models, in terms of prediction accuracy 

for the classification problem. Seven of the 59 

building-oriented variables that are significant at the 

city block level include building gross floor space, 

building density, building construction year, and the 

proportion of commercial buildings in the block. 

Sathishkumar, et al. [16] investigated and assessed 

the methods the steel industry uses to predict energy 

use. Among the data utilized are the load type, CO2 

emissions, and variables for leading and trailing 

reactive power and current. Four statistical models—

Random Forest (a), Gradient Boosting Machine 

(GBM) (b), Radial Kernel Support Vector Machine 

(SVM RBF) (c), and Linear Regression (LR)—are 

trained and evaluated on the test set (RF). When all 

predictors are employed, the best model RF could 

produce an RMSE score of 7.33 in the test set. 

The need to optimize energy usage and reduce costs 

in industrial contexts motivates the employment of 

metaheuristic algorithms to anticipate energy use 

[17]. These methods may be applied to optimize the 

gray prediction model's parameters; the Grey Wolf 

Optimizer (GWO) algorithm provides advantages in 

terms of global optimal solution attainment, stability, 

and convergence speed. Examining how each 

incentive mechanism affects prosumers, customers, 

and energy providers is the goal, with a focus on how 

well the systems under study function in relation to 

them other [17]. Because the research also examines 

the relationship between prosumer numbers and 

energy injection and consumption, we can more 

accurately predict and optimize energy use overall 

[17]. This study presents a novel approach to 

predicting energy consumption in the steel 

manufacturing sector by integrating five 

metaheuristic optimization algorithms—COA, 

MVO, LCA, ERWCA, and SFS—with a multilayer 

perceptron (MLP) model. The significance of this 

work lies in its comparative analysis of population 

sizes and their effect on model performance, an area 

not previously explored in such depth. The hybrid 

frameworks were evaluated through robust metrics 

(RMSE and R²) and a unified scoring system, 

offering a comprehensive methodology for selecting 

optimal modeling strategies in industrial energy 

forecasting. The insights provided have direct 

implications for improving energy efficiency in one 

of the most energy-intensive industries. 

 

 

 

2 Materials and methods 

 

Figure 1 displays the research flowchart for this 

investigation. The modeling approach of hybrid 

optimization algorithms with neural networks 

combines the benefits of both optimization 

algorithms and neural networks to handle complex 

problems. There may be differences in the modeling 

process depending on the specific hybridization 

methodology, the optimization strategy used, and the 

specifics of the problem at hand. The effectiveness of 

the hybrid model depends on how well the 

optimization algorithm and neural network handle 

the complex nature of the optimization problem. 

Combining the learning and pattern recognition 

capabilities of neural networks with the optimization 

capabilities of metaheuristic algorithms is the aim of 

hybrid models. General procedures for modeling 

hybrid optimization algorithms with neural networks 

include problem definition (defining the 

optimization problem that needs to be addressed) and 

neural network architecture design (choosing the 

number of layers, number of neurons in each layer, 

activation functions, and overall structure). The 

neural network will determine and map the 

relationship between the input features and the 

desired output.), hybridization technique (common 

strategies include using the optimization algorithm 

for weight optimization in the neural network, 

initializing the neural network weights using the 

optimization algorithm, or combining the solutions 
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obtained by the optimization algorithm with the 

neural network predictions.); combining neural 

networks with optimization algorithms (involves 

integrating the optimization algorithm within the 

neural network's training process or using the 

optimization algorithm to guide the search space 

exploration for optimal neural network weights.), 

creating the hybrid model (which entails employing 

the selected optimization technique to optimize the 

neural network weights). Validating and fine-tuning 

(i.e., assessing the hybrid model's performance on an 

alternative dataset not utilized for training) and 

searching the solution space for weights that 

minimize a cost function—a measure of the 

discrepancy between expected and actual results—

may be steps in the optimization process. In light of 

the validation results, modify the model's parameters 

(e.g., neural network architecture, optimization 

algorithm settings) to boost generalization. 

Evaluation and experimentation: To determine how 

effectively the hybrid model generalizes to new data, 

use a test dataset. assess the performance metrics that 

are relevant to the specific problem at hand (e.g., 

accuracy, mean squared error). 

 

 
Figure 1. A synopsis of the modeling process 

 

 

2.1 Multi-layer perceptron (MLP) 

 

The energy was estimated using a two-layered 

feedforward neural network from the Matlab ANN 

Toolbox. The ANN network was trained using the 

Levenberg-Marquardt approach from the Matlab 

ANN Toolbox. Three layers make up an artificial 

neural network (ANN): an output layer with a linear 

output function, a hidden layer with a sigmoid 

activation function, and an input layer. The accuracy 

of the forecasts was increased by using random 

initialization. Nonlinear data can be handled using 

the buried layer's sigmoid transfer function. After 

compressing the input, which ranges from plus to 

negative infinity, the result is between 0 and 1 [18]. 

The sigmoid's activation function is shown in 

equation (1): 

 

𝑓(𝑥) = 1/(1 + 𝑒𝑥𝑝−𝑥)  (1) 

 

While the input neurons tracked the data as it 

changed, the output neurons calculated the energy 

used. It was demonstrated that increasing the number 

of hidden neurons from 1 to 10 produced the optimal 

model structure. Training and test data sets were 

created using thirty percent, or seventy percent, of 

the whole data set. The network learns which weights 

are the most economical during training. The 

optimum model iteration for the data was found 

using a cost function method. In order to prevent 
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overfitting, the training was discontinued when the 

error reduction failed six times in a row.  

McCulloch and Pitts [19] were the ones who 

originally put up the idea of an ANN. A number of 

ANNs have been suggested by academics for usage 

in a variety of application scenarios due to their 

potential for non-linear parameter mapping [20, 21]. 

Compared to other forms of artificial neural 

networks, the Multi-Layer Perceptron (MLP) tool is 

the most commonly used due to its flexible design, 

large representational capacity, and plenty of data 

samples [22]. Because of their backpropagation 

training, the MLPs are also known as generic 

approximators or feedforward neural tools [23]. 

They possess a type of processing unit called 

"neurons," which allows them to predict nearly any 

input-output method. Figure 2 depicts the whole 

MLP structure used in this study. This structure 

consists of three distinct layers: an output layer, a 

hidden layer, and an input layer. The neurons in this 

layer are tightly coupled to the neurons in any 

adjacent layers [24]. 

 

 
Figure 2: Diagram of the MLP algorithm 

 

 

The assessment of energy use, which was finally 

forecast using the best predictive network, was the 

primary result of this investigation. For both training 

and testing, four statistical indicators were computed 

for the models. Equations (2–5) define the coefficient 

of determination (R2), mean absolute error, mean 

squared error (MSE), and root mean square error 

(RMSE). (MAE). The models' accuracy was assessed 

using these statistical parameters. For example, R2 

was used to assess the model's robustness and RMSE 

was used to assess the model's accuracy. There are 

three values for 𝑦: a mean value of 𝑦̅; a predicted 

value of 𝑦𝑘; and a measured value of 𝑦𝑘. There are n 

samples total. 

 

𝑅𝑀𝑆𝐸 = √(∑(𝑦𝑘̂ − 𝑦𝑘)
2

𝑛

𝑘=1

)/𝑛 (2) 

 

𝑅2 = 1 − (
(∑ (𝑦𝑘̂ − 𝑦𝑘)

2𝑛
𝑘=1 )

(∑ (𝑦𝑘 − 𝑦̅)
2𝑛

𝑘=1 )
) (3) 

 

𝑀𝑆𝐸 = (∑(𝑦𝑘̂ − 𝑦𝑘)
2

𝑛

𝑘=1

)/𝑛 (4) 
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𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑘̂ − 𝑦𝑘) 

𝑛

𝑖=1

 (5) 

 

2.2 Cuckoo Optimization Algorithm (COA) 

The population of cuckoos used by COA is the same 

as that used by earlier evolutionary algorithms. They 

carry eggs to the nests of their hosts. Some of the 

eggs may develop into adult cuckoos if they closely 

resemble the eggs of the host bird. Nevertheless, 

some are found by the host birds, who eliminate 

them. The nests may or may not be appropriate based 

on how the eggs develop. The amount of profit 

depends on how many eggs survive in a given area. 

The criterion that COA optimizes will be the place 

where eggs survive. In order to increase the 

likelihood that their eggs will survive, cuckoos 

search for the best place to deposit them. Upon 

hatching into adult cuckoos, the eggs form many 

communities. Every civilization has a characteristic 

place to reside, hence the ideal home for all 

civilizations is wherever cuckoos end up in other 

cultures. They then relocate to the ideal location. 

They'll make their home wherever the best 

circumstances exist. The ideal habitat, or egg-laying 

radius, is calculated using the number of eggs 

deposited by each cuckoo and its distance from the 

objective. The cuckoo then deposits eggs in 

impromptu nests by using her egg-laying region. 

This process keeps going until the majority of cuckoo 

populations gather in the most advantageous spot 

[25, 26]. 

In 𝑁𝑣𝑎𝑟 dimension optimization issue, a habitat is 

an assembly of 1 × 𝑁𝑣𝑎𝑟 , displaying the current 

habitat of the cuckoo. The following is an 

explanation of this array: 

 
𝐻𝑎𝑏𝑖𝑡𝑎𝑡 = [𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑎𝑟] (6) 

 

It seems that the value of each variable, 

𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑎𝑟  is a number in floating points. By 

analyzing the profit function  𝑓𝑝 at a habitat of 

(𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑎𝑟) one may determine the profit of a 

certain habitat. Therefore 
𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑓𝑝(ℎ𝑎𝑏𝑖𝑡𝑎𝑡)

= 𝑓𝑝(𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑎𝑟) 
(7) 

 

It is evident that COA is a group of algorithms 

designed to optimize a profit function. The following 

profit function may be easily optimized to employ 

COA in cost-minimization scenarios: 

𝑃𝑟𝑜𝑓𝑖𝑡 = −𝐶𝑜𝑠𝑡(ℎ𝑎𝑏𝑖𝑡𝑎𝑡)

= −𝑓𝑐(𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑎𝑟) 
(8) 

 

A candidate habitat matrix of dimensions 𝑁𝑝𝑜𝑝 ×

𝑁𝑣𝑎𝑟is created to start the optimization process. After 

then, it's expected that each of these initial cuckoo 

houses would contain a certain number of eggs that 

were created at random. Those figures represent the 

lowest and upper boundaries of the total number of 

eggs attributable to each cuckoo at specific iterations, 

as each cuckoo typically lays between five and 

twenty eggs. The "Egg Laying Radius (ELR)," which 

is inversely related to the total number of eggs the 

cuckoo has deposited thus far and the varying limits 

of 𝑣𝑎𝑟ℎ𝑖 and 𝑣𝑎𝑟𝑙𝑜𝑤 is another attribute of authentic 

cuckoos. ELR is defined as follows: 
𝐸𝐿𝑅

= 𝛼 ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑐𝑘𝑜𝑜𝑠 𝑒𝑔𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑔𝑔𝑠
× (𝑣𝑎𝑟ℎ𝑖 − 𝑣𝑎𝑟𝑙𝑜𝑤) 

(9) 

 

According to [25], α is an integer that is meant to 

control the ELR's maximum value. At first, every 

cuckoo in her ELR scatters its eggs into many host 

bird nests. 

 

 

2.3 Multi-verse Optimization (MVO) 

According to Mirjalili, et al. [27], Wormholes, white 

holes, and black holes are the three main pillars of 

the multiverse theory in physics, and they are the 

mathematical models that are created using the MVO 

approach. Let each variable in the optimization 

problem reflect one of the following universes with 

respect to laws. A variation in the rate of inflation 

affects some but not all items in the universe through 

wormholes that lead to the ideal state. In universes 

with higher inflation rates, objects are more likely to 

pass via white holes, and in those with lower inflation 

rates, through black holes. Higher inflation rates are 

linked to white holes, whereas lower inflation rates 

are linked to black holes. The MVO algorithm is 

described as follows in brief: 

Step 1: Set the universe's initial values, as well as the 

maximum repetitions, maximum iterations, interval 

variable [lb, ub], and universe location. 

Step 2: To locate a white hole based on the 

inflation rate of the universe, use a roulette wheel 

selection approach. 

𝑥𝑖
𝑗
= {𝑥𝑘

𝑗
      𝑟1

< 𝑁𝐼(𝑈𝑖) 𝑥𝑖
𝑗
      𝑟1 ≥ 𝑁𝐼(𝑈𝑖)  

(10) 
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where 𝑟1 is a randomly generated number from the 

interval [0, 1]; 𝑈𝑖  is the i-th universe; 𝑥𝑖
𝑗
 is the i-th 

universe's j-th parameter; 𝑥𝑘
𝑗
 is the k-th universe's j-

th parameter selected by the roulette process; and 

𝑁𝐼(𝑈𝑖) is the universe's normative inflation rate. 

Step 3. Time for a wormhole existence probability 

(WEP) calculation, a travel distance rate (TDR) 

update, and a boundary check. 

 
𝑊𝐸𝑃

= 𝑚𝑖𝑛 + 𝑙 ∙ (
𝑚𝑎𝑥 −𝑚𝑖𝑛

𝐿
) 

(11) 

 

𝑇𝐷𝑅 = 1 −
𝑙
1
𝑝

𝐿
1
𝑝

 (12) 

The numbers l for the current iteration, L for the 

maximum number of repetitions, and p for the 

accuracy of the exploitation stand for the highest and 

lowest WEP values, respectively. In the MVO 

model, low WEP and high TDR encourage 

exploration and the avoidance of local optima, 

whereas high WEP and low TDR enhance 

exploitation [28]. 

Step 4: Find the current inflation rate in the 

universe. The cosmos shifts if the rate of inflation 

rises over its present value. In all other 

circumstances, the cosmos seems to continue 

existing. 

Step 5: Update the position of the universe as 

provided by Equation (13). 

𝑥𝑖
𝑗
=

{
 
 

 
 
{
𝑋𝑗 + 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗)  𝑟3 < 0.5

𝑋𝑗 − 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗)  𝑟3 ≥ 0.5

𝑥𝑖
𝑗
                              𝑟2 ≥ 𝑊𝐸𝑃(𝑖)

  𝑟2 < 𝑊𝐸𝑃 
(13) 

 

 (13) 

where r2, r3, and r4 are random values chosen from 

the range [0, 1]; 𝑢𝑏𝑗 is the j-th variable's upper 

bound; and 𝑙𝑏𝑗 is its lower bound. Where 𝑋𝑗 is the j-

th parameter of the best universe at that instant. 

Step 6: criteria for termination. If the prerequisites 

for termination are met, the required output is 

produced. If not, an extra iteration is performed and 

Step 2 of the procedure is followed. 

 

 

2.4 League Championship Algorithm (LCA) 

Similar to other evolutionary algorithms, the LCA 

operates on a population of people [29]. As a result, 

during the initialization stage, a league (population) 

of L (the league size) teams (solutions) is formed, 

and their playing characteristics (fitness values) are 

evaluated. Every team will have n players if we 

analyze a function with n variables, where n is the 

number of variables. For now, the setups that work 

well for the teams make advantage of the starting 

settings. The competition is the next stage. 

According to the league schedule, the clubs play each 

other in pairs for 𝑆 × (𝐿 − 1) weeks, where S is the 

number of seasons and t is the week. Regarding the 

results of the games or matches between teams I and 

J, there is no tie. Wins and losses are shown for each 

outcome. The performance of each squad determines 

this. Every team designs a new configuration during 

the recuperation time based on what performed well 

in the play of the previous week and what is currently 

its finest formation. The selecting process in LCA is 

voracious. It swaps out the current configuration for 

the best one with a more powerful and efficient one. 

Stated otherwise, if the new configuration is now the 

best choice for the team, it should be considered the 

fittest one (i.e., the best response found thus far for 

the i-th member of the population). Upon meeting the 

halting criterion, the algorithm terminates. 

A few terms that we used in our explanation of the 

LCA technique need to be defined and thoroughly 

explained. Creating the league schedule and figuring 

out if the team is winning or losing are two of these 

concepts. Further information on these ideas is 

provided in the sections that follow. 

 

 

2.4.1  Generating a league schedule 

Creating a schedule containing every game for every 

season is the first step in creating the illusion of a 

championship setting, complete with teams vying for 

supremacy. Throughout the season, each team plays 

each other once in a round-robin style. Since L/2 

matches would be played in parallel during each of 

the (L - 1) weeks, if there are L (an even number of 

teams), there will be L (L - 1)/2 matches (if L is an 

odd number, there would be L weeks with (L - 1)/2 

matches and one team would play no games during 

any given week). After that, the championship lasts 

for S more seasons [29]. 

 
2.4.2  Determining winner/loser 

Each squad participates in the LCA and plays against 

other squads; no team may win or lose a game. After 

a game, a team's result is determined stochastically 

using the playing strength criterion, as long as the 

likelihood of a team winning is commensurate with 
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its fit level. According to Kashan [29], the degree of 

fit is determined by the distance with an ideal 

reference point and is associated with the team's 

playing strength. 

 

 

2.5 Evaporation Rate Water Cycle Algorithm 

(ERWCA) 

Sadollah, et al. [30] introduced a novel search 

strategy called the evaporation rate-water cycle 

algorithm (ER-WCA). This approach modifies the 

WCA technique as originally proposed [30]. Two 

instances of how nature influences the WCA 

algorithm are the water cycle and water flowing 

toward the ocean. During the hydrological cycle, 

water from streams evaporates and is used by plants 

for photosynthesis. Once the vapor enters the 

atmosphere, it condenses as clouds. 

Depending on the weather, water re-enters the earth 

in a variety of states. According to this system, rivers 

are excellent persons, whilst other water flows are 

referred to as streams. In the event when K represents 

the issue's magnitude, the potential streams are 

𝑥1, 𝑥2, … , 𝑥𝑘 . The initial population is created at 

random, as seen below: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

[
 
 
 
 
 
 
 
 

𝑆𝑒𝑎
𝑅𝑖𝑣𝑒𝑟1
𝑅𝑖𝑣𝑒𝑟2
⋮

𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑠𝑟+1

𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑠𝑟+2

⋮
𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑝𝑜𝑝 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝑥1
1

𝑥1
2

⋮

𝑥1
𝐾𝑝𝑜𝑝

𝑥2
1

𝑥2
2

⋮

𝑥2
𝐾𝑝𝑜𝑝

…
…
⋮
⋯

𝑥𝑘
1

𝑥𝑘
2

⋮

𝑥𝑁
𝐾𝑝𝑜𝑝

]
 
 
 
 

 

(14) 

               

where the swarm size is indicated by 𝐾𝑝𝑜𝑝 . The 

intensity of flow for each approach is computed 

using Equation 14:  
𝐶𝑜𝑠𝑡𝑖 = 𝑓(𝑥1

𝑖 , 𝑥2
𝑖 , … , 𝑥𝐾

𝑖 )     𝐼

= 1, 2, … ,𝐾𝑝𝑜𝑝   
(15) 

 

Rivers and oceans, 𝐾𝑠𝑟  are chosen from the most 

accomplished individuals. The residual population 

that may flow into rivers or the sea is shown by the 

symbol 𝐾Streams. The amount of water drawn from 

the sea or river varies depending on the strength of 

the flow. The approximate distribution of streams to 

each river and the sea is shown by the bellows: 
𝐶𝑛 = 𝐶𝑜𝑠𝑡𝑛 − 𝐶𝑜𝑠𝑡𝐾𝑠𝑟+1      𝑛

= 1, 2, … ,𝐾𝑠𝑟   
(16) 

 

𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑{|
𝐶𝑛

∑ 𝐶𝑛
𝐾𝑠𝑟
𝑛=1

× 𝐾𝑆𝑡𝑟𝑒𝑎𝑚𝑠|  (17) 

 

The number of streams flowing toward a certain river 

or sea is indicated by the symbols NS𝑛. The fitness 

function is created to distribute streams 

proportionally between rivers and the sea since more 

streams flow into the sea. In the natural world, certain 

streams unite to create new rivers. 

Figure 3 illustrates the path a stream travels in the 

direction of a river when there is only one sea 

and𝐾𝑠𝑟−1 rivers among a population of 𝐾𝑝𝑜𝑝 people. 

Additional information on the proposed 

methodology may be found in related papers [31]. 

 

 
Figure 3. The direction in which a stream flows toward a particular river [30]. 
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2.6 Stochastic Fractal Search (SFS) 

An innovative swarm-based strategy for determining 

the ideal PID controller parameter values is the 

stochastic fractal search method [32]. SFS aims to 

increase the convergence rate by promoting 

information sharing across all group points, in 

contrast to its initial iteration, fractal search. To find 

the least value of the cost function, the method, 

which primarily makes use of the mathematical 

underpinnings of fractal theory, passes through the 

diffusing and upgrading stages. The former process, 

which manages the search space, is comparable to the 

fractal search in that it generates new particles 

around each particle's current position using the 

Gaussian walk statistical approach. In the next stage, 

two statistical techniques are used only for SFS as an 

upgrading technique to improve issue domain 

research. This phase serves to maintain the 

algorithm's exploratory property by adjusting a 

point's position based on the positions of other group 

points. It also makes information transfer between 

particles easier. 

The first statistical method impacts each particle 

vector index, whereas the second statistical approach 

affects all points. 

1. The first statistical process 

The first step involves ranking particles based on 

their function values of fitness using the following 

equation: 

𝑃𝑎𝑖 =
𝑟𝑎𝑛𝑘(𝑃𝑖)

𝑁𝑃
 (18) 

 

 

The number of particles in the group is denoted 

by 𝑁𝑃  in this instance, and the rank of the i-th 

particle is indicated by 𝑟𝑎𝑛𝑘(𝑃𝑖). For every point 𝑃𝑖 
in the system, if 𝑃𝑎𝑖<𝜀, the j-th component of 𝑃𝑖  is 

upgraded using Equation (19); if not, the 

corresponding component remains unchanged. 

 
𝑃𝑖
′(𝑗) = 𝑃𝑚(𝑗) − 𝜀(𝑃𝑛(𝑗) − 𝑃𝑖(𝑗)) (19) 

 

The newly updated position of 𝑃𝑖 in this equation is 

denoted by 𝑃𝑖
′. Random points from the group are 𝑃𝑚 

and 𝑃𝑛  whereas 𝜀  is an accidental integer in the 

interval [0, 1]. 

2. The second statistical process 

Generally speaking, this technique aims to improve 

group variety over the original procedure by altering 

the conditions of the chosen point while accounting 

for the placements of other points. This is 

accomplished by evaluating the requirement 𝑃𝑖<𝜀, 
and ranking all of the points earned in the first phase 

using Eq (18). According to Eq. (20), if the condition 

is met, the existing state of 𝑃𝑖
′ is improved. If not, it 

will persist into the next generation unchanged. 

 
𝑃′𝑖
′ = 𝑃𝑖

′ − 𝜀(𝑃𝑚
′ − 𝑃𝑏𝑒𝑠𝑡)     𝑖𝑓    𝜀 ≤ 0.5 (20) 

 
𝑃′𝑖
′ = 𝑃𝑖

′ − 𝜀(𝑃𝑚
′ − 𝑃𝑛

′)     𝑖𝑓    𝜀 > 0.5 (21) 

 

In SFS, the variables 𝑃𝑚
′  and 𝑃𝑛

′  represent two 

randomly selected points from the initial process, and 

𝑃′𝑖
′  denotes the modified state of 𝑃𝑖

′ . Additionally, 

𝑃𝑏𝑒𝑠𝑡  indicates the position of the best point, and the 

accidental number 𝜀 is between 0 and 1. After every 

statistical process, SFS uses a greedy selection 

mechanism to compare the fitness values of the old 

and improved solutions and selects the option that is 

more fit. 

 

 

3 Established database 

 

Data on energy use that is gathered every fifteen 

minutes is used in this investigation. After that, 

prediction models are created using machine learning 

techniques. The data was supplied by the DAEWOO 

Steel Co. Ltd. in Gwangyang, South Korea. It 

produces iron and steel plates in addition to a range 

of coils. Energy use data is kept in a cloud-based 

system. Statistics on the sector's energy use are 

available on the Korea Electric Power Corporation 

website (pccs.kepco.- go.kr). These statistics include 

computations and representations of daily, monthly, 

and annual data. Smart meters are used to measure 

the energy consumption of machine equipment used 

in the steel industry. These meters also collect and 

store additional energy use data in a cloud-based 

system. After demand was forecasted via data 

analytics techniques, energy consumption rules were 

improved and modified. The primary focus of this 

inquiry is the energy data (in Kwh) that is recorded 

for the industry every 15 minutes. The 15-minute 

reporting interval was used to track abrupt variations 

in energy consumption. R was used to analyze each 

and every piece of data [33]. The data covers the 

entire year (12 months). Most studies on energy 

consumption used meteorological criteria to forecast 
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energy use based on the influence of weather 

components [34]. Because of the open architecture 

and lack of heating and cooling systems in the steel 

sector, weather had minimal effect on the patterns of 

energy use in this research. The output variables and 

inputs by the output of the dataset are shown in 

Figure 4. Additional details like the day of the week, 

the period or weekday position, and the number of 

seconds till midnight for each day are provided by 

the date/time variable (NSM). The process of 

developing new features from pre-existing variables 

is known as feature engineering. Increasing the 

effectiveness of statistical learning algorithms is the 

aim of this.  

The dataset was randomly divided into 70% training 

and 30% testing subsets, a common convention in 

machine learning to ensure that the model 

generalizes well and avoids overfitting. This ratio 

allows the model sufficient exposure to data for 

learning patterns while reserving enough unseen data 

for robust performance evaluation. The independent 

variables were selected based on their demonstrated 

relevance in prior literature and their direct influence 

on energy consumption in steel production. 

Variables such as [list the actual variables] reflect 

operational, environmental, and process-related 

factors that contribute significantly to energy usage. 

These variables were also selected due to their 

availability and consistency in the public dataset 

obtained from the South Korean industrial report. 
Although the authors are based in Iraq, the dataset 

used in this study originates from publicly available 

South Korean industrial energy reports. The data 

were retrieved and validated from official sources, 

ensuring their reliability and relevance. The study 

does not involve direct experimentation or 

confidential national data; it is solely based on open-

access datasets intended for research and policy 

analysis. Proper citation and verification of the data 

source have been ensured. 

 

 

 

 

 
a) Leading/Lagging Current Power Factor/ 

Usage(kWh) 

 
b) Leading/Lagging Current Power Factor/ 

Usage(kWh) 

 
c) CO2 (Ppm)/of second from midnight(s)/(kWh) 

Figure 4: Details on the inputs and outputs. 

 

 

4 Results and discussion  

 

To find the ideal configuration, a variety of networks 

with varying numbers of layers and kinds of neurons 

have been built. The accuracy of the models is also 

impacted when a standard MLP's layer and neuron 

counts are changed. Using a feed-forward back-

propagation approach and an average of five hidden 

units determined by the RMSE and R2 metrics, the 

optimal network was built. Early optimization results 

are the starting point for many optimization 

approaches. The model with the highest score 

provides the best prediction network. Interestingly, 

the model's predicted accuracy was used to decide 

ranking. For instance, the chosen model receives a 

higher score when the RMSE decreases. The score 

and the R2 rise in unison. For this reason, the 
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following sections make use of the results of these 

networks. The MSE fluctuations for each technique 

are shown in Figure 5. 

The first optimization discovery step will lay the 

groundwork for further stages of optimization 

methodologies. Consequently, these networks' 

outputs are used in the parts that follow. As the mean 

square error goes down, structures are more 

consistently correct (MSE). Regression and 

classification issues may be more accurately solved 

with the help of the anticipated values of the 

suggested model. Figure 5 shows the mean square 

error (MSE) variations across several cycles of the 

energy consumption prediction system estimations 

for the combined COA, MVO, LCA, ERWCA, and 

SFS designs. COA, MVO, LCA, ERWCA, and SFS 

have decided that the best options are 200, 250, 200, 

250, and 400 based on this data (𝑁𝑝𝑜𝑝). 

 
(a) COA-MLP 

 
(b) MVO-MLP 

 
(c) LCA-MLP 

 
(d) ERWCA-MLP 

 
(e) SFS-MLP 

Figure 5. MSE variance amongst techniques. 
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4.1 Assessing Statistical Accuracy 

 

An item or person is assigned a score by a scoring 

system according to their qualities or performance. 

Different ranking strategies may be required for 

different goals and circumstances. A common way is 

the total score rank methodology, which involves 

adding up the points for every item or individual and 

assigning a score based on their cumulative score. An 

alternative method (a term not frequently employed) 

is the color-scoring ranking system. That may, 

however, be a reference to a color-coded, level-

based, classified rating system. For each grading 

level, the best hybrid designs are identified using R2 

and RMSE (Table 1-5). The best hybrid strategy for 

energy consumption in industrial cities uses swarm 

populations of 200, 250, 200, 250, and 400 to train 

and assess the results of predictive modeling (i.e., 

How well the program was able to forecast energy 

usage). It also shows how closely the outcomes of 

step two match those of phase one. Tables 1–5 

display the network findings for the various COA–

MLP, MVO–MLP, LCA–MLP, ERWCA–MLP, and 

SFS–MLP models. 

Tables 1 through 5 present the outcomes of utilizing 

various combinations of meta-heuristic algorithms 

on Multilayer Perceptron (MLP) models, namely 

COA–MLP, MVO–MLP, LCA–MLP, ERWCA–

MLP, and SFS–MLP, in order to predict energy 

consumption in a small-scale steel firm in South 

Korea. Each table provides a comprehensive picture 

of the models' performance across a range of 

population sizes by displaying metrics such as R-

squared (R2) and Root Mean Squared Error (RMSE) 

over the training and testing datasets. Techniques for 

ranking and grading offer a comparative assessment 

of how well the algorithms produce accurate 

estimates of energy usage. The designs that scored 

the highest overall for ERWCA-MLP and SFS-MLP, 

respectively, had 400 and 250 populations, indicating 

that they are more predictive. These results provide 

valuable guidance on how to enhance meta-heuristic 

algorithms to more precisely predict energy use in 

the context of small-scale steel enterprises, which in 

turn supports the development of smart city 

infrastructure and sustainable industrial practices. 

The COA-MLP model demonstrated its optimal 

performance when configured with a population size 

of 200. During training, the model achieved a 

remarkably low Root Mean Square Error (RMSE) of 

3.76348, indicating a high precision in predicting 

energy efficiency. The corresponding R2 value for 

training was 0.99369, reflecting a strong correlation 

between the predicted and actual values. When 

evaluated on the testing dataset, this configuration 

continued to showcase excellence with an RMSE of 

3.85332 and an R2 of 0.99324. These results suggest 

that a population size of 200 led to a well-tuned 

COA-MLP model, effectively capturing the 

underlying patterns in the data and generalizing to 

unseen instances. Conversely, the worst-performing 

configuration for COA-MLP was observed when the 

population size was set to 450. Despite having a 

larger population, this configuration exhibited 

challenges in accurately modeling the energy 

efficiency of the steel production process. During 

training, the model struggled, yielding a higher 

RMSE of 5.62769 and a lower R2 of 0.98583, 

signifying a less effective fit to the training data. This 

trend persisted when applied to the testing dataset, 

where the RMSE increased to 5.68331, and the R2 

decreased to 0.98524. These results indicate a 

diminished ability of the COA-MLP model to 

generalize to new, unseen data, possibly due to 

overfitting or lack of convergence with the larger 

population size. The population size of 200 emerged 

as the most suitable choice for the COA-MLP model, 

providing a balance between complexity and 

generalization. Conversely, the larger population 

size of 450 led to a suboptimal model performance, 

emphasizing the importance of parameter tuning in 

meta-heuristic algorithms like COA when applied to 

MLP structures. 

 

 
Table 1. The network results for various COA-MLP pairings. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 4.74548 0.98994 4.85438 0.98925 4 4 4 4 16 7 

100 4.65071 0.99034 4.69975 0.98993 5 5 5 5 20 6 

150 4.98577 0.98889 5.08978 0.98818 3 3 3 3 12 8 
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200 3.76348 0.99369 3.85332 0.99324 10 10 10 10 40 1 

250 5.31614 0.98736 5.33573 0.98700 2 2 2 2 8 9 

300 4.04138 0.99272 4.11705 0.99228 7 7 7 7 28 4 

350 4.40944 0.99132 4.48229 0.99084 6 6 6 6 24 5 

400 3.90806 0.99319 3.96893 0.99283 8 8 8 8 32 3 

450 5.62769 0.98583 5.68331 0.98524 1 1 1 1 4 10 

500 3.77750 0.99364 3.86867 0.99319 9 9 9 9 36 2 

 

The MVO-MLP model demonstrated its superior 

performance when configured with a population size 

of 250. During training, this configuration achieved 

an impressive RMSE of 2.86040, indicating a high 

level of precision in predicting energy efficiency. 

The corresponding R2 value for training was 

0.99636, reflecting a strong correlation between the 

predicted and actual values during the training phase. 

When evaluated on the testing dataset, this 

configuration continued to exhibit excellent 

performance with an RMSE of 2.94209 and an R2 of 

0.99607. These results suggest that a population size 

of 250 led to a well-optimized MVO-MLP model, 

effectively capturing the underlying patterns in the 

data and generalizing to new instances. Contrary to 

the initial assessment, it appears that a population 

size of 200 is considered the worst-performing 

configuration for MVO-MLP. The RMSE for 

training was 3.91689, and the R2 was 0.99302. When 

applied to the testing dataset, the RMSE increased to 

3.91689, and the R2 decreased to 0.99302. These 

results indicate that a population size of 200 led to a 

suboptimal MVO-MLP model performance, 

potentially due to convergence issues or insufficient 

exploration of the solution space. 

 
Table 2. The network results for various MVO-MLP pairings. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 3.80074 0.99356 3.87873 0.99315 2 2 2 2 8 9 

100 3.58083 0.99429 3.63533 0.99399 3 3 3 3 12 8 

150 3.54821 0.99439 3.61757 0.99405 4 4 4 4 16 7 

200 3.82472 0.99348 3.91689 0.99302 1 1 1 1 4 10 

250 2.86040 0.99636 2.94209 0.99607 10 10 10 10 40 1 

300 3.23848 0.99533 3.32938 0.99496 7 7 7 7 28 4 

350 3.32624 0.99507 3.39047 0.99477 6 6 6 6 24 5 

400 3.46003 0.99467 3.52017 0.99436 5 5 5 5 20 6 

450 3.16521 0.99554 3.23368 0.99525 8 8 8 8 32 3 

500 3.06791 0.99581 3.15861 0.99546 9 9 9 9 36 2 

 

The LCA-MLP model performed exceptionally well 

with a population size of 200. During training, this 

configuration achieved an RMSE of 3.88871 and an 

R2 of 0.99326, indicating a high degree of accuracy 

in predicting energy efficiency. When evaluated on 

the testing dataset, the model's performance 

remained robust with an RMSE of 3.97548 and an R2 

of 0.99281. These results suggest that a population 

size of 200 led to a well-optimized LCA-MLP model, 

demonstrating its ability to generalize effectively to 

new data. Contrarily, a population size of 50 appears 

to be the least effective for the LCA-MLP model. 

The model trained with a population size of 50 

exhibited higher errors, with an RMSE of 4.51894 

and an R2 of 0.99089 during the training phase. These 

issues persisted when the model was tested on new 

data, resulting in an RMSE of 4.59644 and an R2 of 

0.99037. These outcomes indicate that a smaller 

population size of 50 led to suboptimal training and 

testing performance for the LCA-MLP model. The 

model may have struggled to capture the complexity 

of the underlying patterns in the data, resulting in 

reduced predictive accuracy. 

 
Table 3. The network results for various LCA-MLP pairings. 
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Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 4.51894 0.99089 4.59644 0.99037 1 1 1 1 4 10 

100 4.19568 0.99215 4.27880 0.99166 8 8 8 8 32 3 

150 4.21899 0.99206 4.35842 0.99135 7 7 6 6 26 4 

200 3.88871 0.99326 3.97548 0.99281 10 10 10 10 40 1 

250 4.05630 0.99266 4.18441 0.99203 9 9 9 9 36 2 

300 4.47348 0.99107 4.56618 0.99050 3 3 3 3 12 8 

350 4.23930 0.99198 4.29066 0.99161 6 6 7 7 26 4 

400 4.25251 0.99193 4.40533 0.99116 5 5 5 5 20 6 

450 4.48317 0.99103 4.57893 0.99044 2 2 2 2 8 9 

500 4.27031 0.99186 4.41622 0.99111 4 4 4 4 16 7 

 

The ERWCA-MLP model achieved its peak 

performance with a population size of 250. During 

training, this configuration demonstrated an 

impressive RMSE of 2.03778 and an R2 of 0.99815, 

showcasing high accuracy in predicting energy 

efficiency. When evaluated on the testing dataset, the 

model's excellence persisted with an RMSE of 

2.09627 and an R2 of 0.99800. These results indicate 

that a population size of 250 led to a well-optimized 

ERWCA-MLP model, displaying strong 

generalization capabilities. In contrast, a population 

size of 50 appears to be the least effective for the 

ERWCA-MLP model. The model trained with this 

smaller population size exhibited higher errors, with 

an RMSE of 3.11111 and an R2 of 0.99569 during the 

training phase. These issues persisted when the 

model was tested on new data, resulting in an RMSE 

of 3.19425 and an R2 of 0.99536. These outcomes 

suggest that a smaller population size of 50 led to 

suboptimal training and testing performance for the 

ERWCA-MLP model. The model may have 

struggled to capture the complexity of the underlying 

patterns in the data, resulting in reduced predictive 

accuracy. 

 
Table 4. The network results for various ERWCA-MLP pairings. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 3.11111 0.99569 3.19425 0.99536 1 1 1 1 4 10 

100 2.76610 0.99659 2.85663 0.99629 2 2 2 2 8 9 

150 2.42653 0.99738 2.48403 0.99720 5 5 5 5 20 6 

200 2.64471 0.99689 2.70127 0.99668 4 4 4 4 16 7 

250 2.03778 0.99815 2.09627 0.99800 10 10 10 10 40 1 

300 2.65120 0.99687 2.76177 0.99653 3 3 3 3 12 8 

350 2.36080 0.99752 2.37750 0.99743 6 6 8 8 28 4 

400 2.28214 0.99768 2.38845 0.99741 8 8 7 7 30 3 

450 2.32085 0.99760 2.41863 0.99734 7 7 6 6 26 5 

500 2.10771 0.99802 2.21501 0.99777 9 9 9 9 36 2 

 

The SFS-MLP model demonstrated its optimal 

performance with a population size of 400. During 

the training phase, this configuration achieved a 

remarkable RMSE of 2.50700 and an R2 of 0.99720, 

highlighting its ability to accurately predict energy 

efficiency based on the given features. Upon 

evaluation on the testing dataset, the excellence of 

the model persisted with an RMSE of 2.59167 and an 

R2 of 0.99695. These results indicate that a 

population size of 400 led to a well-tuned SFS-MLP 

model, showcasing strong generalization 

capabilities. Conversely, a population size of 50 
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appears to be the least effective for the SFS-MLP 

model. The model trained with this smaller 

population size exhibited higher errors, with an 

RMSE of 2.97527 and an R2 of 0.99606 during the 

training phase. These issues persisted when the 

model was tested on new data, resulting in an RMSE 

of 3.04438 and an R2 of 0.99579. These outcomes 

suggest that a smaller population size of 50 led to 

suboptimal training and testing performance for the 

SFS-MLP model. The model may have struggled to 

adequately capture the underlying patterns in the 

data, resulting in reduced predictive accuracy. 

 
Table 5. The network results for various SFS-MLP pairings. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 2.97527 0.99606 3.04438 0.99579 1 1 1 1 4 10 

100 2.92716 0.99619 3.00053 0.99591 3 3 3 3 12 8 

150 2.81352 0.99648 2.89390 0.99619 4 4 4 4 16 7 

200 2.63799 0.99690 2.72825 0.99662 7 7 6 6 26 4 

250 2.73470 0.99667 2.81791 0.99639 5 5 5 5 20 6 

300 2.95066 0.99612 3.00906 0.99588 2 2 2 2 8 9 

350 2.64454 0.99689 2.69327 0.99670 6 6 7 7 26 4 

400 2.50700 0.99720 2.59167 0.99695 10 10 10 10 40 1 

450 2.53216 0.99715 2.60059 0.99693 9 9 9 9 36 2 

500 2.59696 0.99700 2.67468 0.99675 8 8 8 8 32 3 

 

The performance of the model is evaluated in the 

second stage by comparing the anticipated values of 

the hybrid design with the actual data. This study 

uses the R2 statistic, which is a commonly used 

metric for assessing the efficacy of hybrid designs. 

Researchers may get more understanding by 

comparing projected values with actual data to assess 

the model's accuracy and capacity to capture dataset 

variation. An important factor influencing a binary 

classifier system's diagnostic performance is the 

discriminating threshold selection. Figure 6-10 

provides a graphical picture of how changing this 

threshold affects the model's capacity to discriminate 

between positive and negative categories. Higher R2 

values suggest that the model performs better when 

it comes to group differentiation. The structural R2 

plots of the hybrid are best-fit. These charts show 

how well the model performs in relation to several 

distinguishing factors. Using the suggested hybrid 

COA-MLP, MVO-MLP, LCA-MLP, ERWCA-

MLP, and SFS-MLP models as a basis, the first and 

most important stage is to identify the optimal 

prediction model. During the iteration phase, ideal 

population sizes—200, 250, 200, 250, and 400—are 

selected, highlighting the necessity of fine-tuning 

these parameters to improve prediction accuracy. 

This all-inclusive method evaluates the hybrid 

models' prediction power and helps choose the best 

design for enhanced diagnostic performance based 

on the particular dataset and application. Iteration 

makes models more helpful for estimating steel 

energy usage by ensuring that they are selected and 

improved for best outcomes.  
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(a) COAMLP-Np=50 (b) COAMLP-Np=100 

  
(c) COAMLP-Np=150 (d) COAMLP-Np=200 

  
(e) COAMLP-Np=250 (f) COAMLP-Np=300 
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(g) COAMLP-Np=350 (h) COAMLP-Np=400 

  

(i) COAMLP-Np=450 (j) COAMLP-Np=500 

Figure 6. The accuracy findings for best-fit architectures for the COA-MLP model. 

 

  

(a) MVOMLP-Np=50 (b) MVOMLP -Np=100 
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(c) MVOMLP -Np=150 (d) MVOMLP -Np=200 

  
(e) MVOMLP -Np=250 (f) MVOMLP -Np=300 

  

(g) MVOMLP -Np=350 (h) MVOMLP -Np=400 
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(i) MVOMLP -Np=450 (j) MVOMLP -Np=500 

Figure 7. The accuracy findings for best-fit architectures for the MVO-MLP model. 

 

  

(a) LCAMLP-Np=50 (b) LCAMLP -Np=100 

  

(c) LCAMLP -Np=150 (d) LCAMLP -Np=200 
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(e) LCAMLP -Np=250 (f) LCAMLP -Np=300 

  
(g) LCAMLP -Np=350 (h) LCAMLP -Np=400 

  
(i) LCAMLP -Np=450 (j) LCAMLP -Np=500 

Figure 8. The accuracy findings for best-fit architectures for the LCA-MLP model. 
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(a) ERWCAMLP -Np=50 (b) ERWCAMLP -Np=100 

  
(c) ERWCAMLP -Np=150 (d) ERWCAMLP -Np=200 

  

(e) ERWCAMLP -Np=250 (f) ERWCAMLP -Np=300 
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(g) ERWCAMLP -Np=350 (h) ERWCAMLP -Np=400 

  
(i) ERWCAMLP -Np=450 (j) ERWCAMLP -Np=500 

Figure 9. The accuracy findings for best-fit architectures for the ERWCA-MLP model. 

 

  

(a) SFSMLP-Np=50 (b) SFSMLP -Np=100 
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(c) SFSMLP -Np=150 (d) SFSMLP -Np=200 

  

(e) SFSMLP -Np=250 (f) SFSMLP -Np=300 

  
(g) SFSMLP -Np=350 (h) SFSMLP -Np=400 
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(i) SFSMLP -Np=450 (j) SFSMLP -Np=500 

Figure 10. The accuracy findings for best-fit architectures for the SFS-MLP model. 

 

 

4.2 Error analysis 

 

Figures 11–15 display the frequency distribution of 

the best-fitted structures for COA–MLP, MVO–

MLP, LCA–MLP, ERWCA–MLP, and SFS–MLP. 

The findings from the training and testing datasets 

show an extraordinarily high degree of agreement 

between the computed and observed energy 

consumption indicators. The consistency of the data 

indicates that the models are effective in accurately 

forecasting the energy consumption in industrial 

environments. The study's findings demonstrate the 

high degree of agreement between the estimated and 

observed energy usage metrics. The training and 

testing datasets are used to produce them. This result 

highlights the models' value in providing accurate 

estimates of industrial cities' energy usage. The 

methods employed by the SFS-MLP, ERWCA-

MLP, LCA-MLP, COA-MLP, and MVO-MLP 

models collectively contribute to the reliable and 

accurate estimation of energy consumption. 

Surprisingly strong agreement between the 

computed and observed data suggests that these 

models accurately capture the underlying dynamics 

and patterns of energy use. This shows that the neural 

network models and optimization approaches 

utilized in this work provide a dependable method for 

producing accurate predictions of energy use. The 

results validate the utility of the proposed models and 

add to the growing body of knowledge about 

effective methods for estimating energy 

consumption in industrial settings. 

 

 

 
a) Training-200 
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a) Testing-200 

Figure 11. The ideal frequency for the COA-MLP method. 

 

 
a) Training-250 

 
a) Testing-250 

Figure 12. The ideal frequency for the MVO-MLP method. 

 

 
a) Training-200 
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a) Testing-200 

Figure 13. The ideal frequency for the LCA-MLP method. 

 

 
a) Training-250 

 
a) Testing-250 

Figure 14. The ideal frequency for the ERWCA-MLP method. 

 

 
a) Training-400 
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a) Testing-400 

Figure 15. The ideal frequency for the SFS-MLP method. 

 

4.3 Measurement of energy consumption using 

MLP 

 

ERWCAMLP with a swarm size of 250 stands out 

with the highest R2 scores for both training (0.99815) 

and testing (0.99800) datasets. This indicates a 

superior ability to explain the variance in the data and 

make accurate predictions. MVO-MLP, utilizing a 

swarm size of 250, achieved a notable balance 

between training and testing performance, exhibiting 

an R2 of 0.99636 in training and 0.99607 in testing. 

This suggests good generalization capabilities of the 

model to new, unseen data. SFSMLP, configured 

with a population size of 400, achieved the lowest 

RMSE on the testing dataset (2.59167). This 

indicates that the model's predictions were, on 

average, closer to the true values during the testing 

phase compared to other algorithms. COAMLP and 

LCAMLP, both with a swarm size of 200, exhibit 

higher RMSE values in training compared to other 

algorithms. This suggests that these models may face 

challenges in accurately fitting the training data. The 

scoring metrics (based on RMSE and R2) and the 

total score provide a comprehensive evaluation of 

each algorithm's overall performance. 

ERWCAMLP, with a total score of 20, secures the 

top rank, emphasizing its superiority in optimizing 

energy efficiency. This comparative analysis aids in 

understanding the strengths and weaknesses of each 

meta-heuristic algorithm in the context of energy 

efficiency optimization for steel production. It 

provides valuable insights for selecting the most 

effective algorithmic approach based on specific 

requirements and priorities. 

 
Table 6. The COA-MLP, MVO-MLP, LCA-MLP, ERWCA-MLP, and SFS-MLP structures' network outcomes 

Methods 

 

Swarm 

size 

Training dataset Testing dataset Scoring Total 

Score 
Rank  

RMSE R2 RMSE R2 Training Testing  

COAMLP 200 3.76348 0.99369 3.85332 0.99324 2 2 2 2 8 4  

MVOMLP 250 2.86040 0.99636 2.94209 0.99607 3 3 3 3 12 3  

LCAMLP 200 3.88871 0.99326 3.97548 0.99281 1 1 1 1 4 5  

ERWCAMLP 250 2.03778 0.99815 2.09627 0.99800 5 5 5 5 20 1  

SFSMLP 400 2.50700 0.99720 2.59167 0.99695 4 4 4 4 16 2  

 

 

 

 

4.4 Taylor Diagrams 

 

In meteorology and climate research, the Taylor 

diagram—named for Karl E. Taylor—is a graphical 

tool used to assess how well many datasets match 

with a reference dataset. It is frequently used to 

evaluate the performance of model outputs on 

observational data, including climate models and 

numerical simulations. Visual representations of 

each dataset's standard deviation, correlation, and 

centered root mean square difference (RMSD) with 

respect to the reference dataset are provided. This 
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image can assist researchers in identifying the most 

sophisticated datasets since it provides a thorough 

overview of model performance across several 

domains. For evaluating and comparing models, 

Taylor diagrams are useful tools. They might also 

help in the model's development by drawing 

attention to regions that require work. They conduct 

a comprehensive analysis of the model's performance 

in terms of correlation, variability, and overall 

agreement with observational data. When it was first 

displayed, it was Taylor [35] provided a visual 

depiction of the degree to which an observation and 

a pattern or set of patterns are comparable. The 

standard deviations, the centered root-mean-square 

difference, and the similarity score between the two 

patterns are obtained from the correlation. These 

graphics are very helpful for analyzing multi-

component complicated models or assessing how 

well different models perform, as the IPCC has 

shown [36]. The Taylor diagram in Figure 16 

compares how well the model can replicate the 

regional distribution of the yearly average 

precipitation in the present datasets. We conducted a 

statistical analysis using four labeled models. The 

position of each label on the map shows how well the 

predicted precipitation pattern of the model matches 

the observed data. For the COA-MLP, MVO-MLP, 

LCA-MLP, ERWCA-MLP, and SFS-MLP, the 

pattern correlation coefficients are about 0.99. 

 

  
(a) Training (b) Testing 

Figure 16. The Taylor diagram shows the energy consumption of the industrial metropolis. 

 

4.5 Discussion 

 

The pursuit of energy efficiency in steel production 

demands cutting-edge techniques to optimize Multi-

Layer Perceptron (MLP) structures effectively. Our 

study delves into five distinct optimization methods, 

each contributing uniquely to the challenge. COA-

MLP exhibited superior training and testing results 

with a swarm size of 200. This configuration 

achieved a balance between accuracy and 

computational efficiency, making it an optimal 

choice for practitioners aiming for competitive 

results without sacrificing computational resources. 

MVO-MLP emerged as a robust performer, 

showcasing outstanding training and testing 

accuracy with a swarm size of 250. This method is 

particularly suitable for scenarios where achieving 

high precision in energy efficiency predictions is a 

top priority. LCA-MLP, while demonstrating 

competitive results, achieved a balanced 

performance with a swarm size of 200. This method 

could be preferred in situations where a trade-off 

between accuracy and computational resources is 

necessary. ERWCA-MLP outshone others, securing 

the top rank. Its ability to navigate the solution space 

effectively and achieve high accuracy in both 

training and testing phases positions it as a top 

contender for applications demanding 

uncompromised precision. SFS-MLP demonstrated 

exceptional efficiency when configured with a larger 

swarm size (400). This suggests that, when 

computational resources allow, incorporating the 
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sequential forward selection method can 

significantly boost the overall performance of MLP 

models. The selection of an optimization method 

depends on the specific goals and constraints of a 

given project. COA-MLP and MVO-MLP offer 

well-balanced solutions, while ERWCA-MLP and 

SFS-MLP shine in scenarios prioritizing accuracy. 

Practitioners should carefully consider the 

computational resources available. While ERWCA-

MLP and SFS-MLP excel in accuracy, the 

computational demands may vary. Project-specific 

constraints should guide the selection process. Our 

study underscores the importance of a holistic 

approach to optimization. Considering the trade-offs 

between computational efficiency and accuracy 

ensures that the chosen MLP structure aligns with the 

broader goals of enhancing energy efficiency in steel 

production. 

 

 

5. Conclusions 

 

This study evaluated the performance of five 

metaheuristic-MLP models for predicting energy-

related outcomes using a range of population sizes. 

Among them, ERWCA-MLP achieved the best 

results with the lowest RMSE and highest R², 

followed closely by SFS-MLP and MVO-MLP. 

COA-MLP and LCA-MLP also showed reasonable 

predictive accuracy but ranked lower. The results 

highlight the importance of algorithm selection and 

tuning (e.g., population size) in optimizing hybrid 

neural models. These findings provide actionable 

insights for developing accurate, efficient predictive 

tools in energy-intensive industries. 
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