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This article investigates uplink massive MIMO system using 1-bit analog-to-digital
converters (ADCs) and introduces a deep-learning-based framework for channel
estimation. The proposed method utilizes prior channel estimation data together with
deep neural networks to construct an advanced mapping from quantized received
signals to their corresponding channel representations. To support this, the necessary
pilot sequence length and structure are determined to ensure the feasibility of such a
mapping function. It has been observed that by increasing the number of base station
antennas enhances the performance of the deep learning-based channel estimation for
a fixed pilot sequence length. Alternatively, for a preferred channel estimation
performance, smaller number of pilot sequences is desirable as the number of
antennas increases. This observable has been analytically demonstrated for specific
channel models. Simulation results validate these findings, revealing that a high
number of antennas improve channel estimation performance in terms of predicted
signal to noise ratio per antenna and normalized mean squared error.

1. Introduction

Massive

multiple-input
(MIMO) has emerged
technology for 5G and beyond, contributing
significant gains in throughput and energy such as data

as a revolutionary

multiple-output Despite their rewards, low-resolution ADCs
introduce severe nonlinearities due to signal
quantization, considerably complicating tasks
detection and  channel

estimation[4][5]. Conventional channel estimation

efficiency compared to conventional MIMO
systems [1][2]. However, deploying massive
MIMO systems with large numbers of antennas at
the base station requires an equally large number
of radio-frequency (RF) chains, which radically
increases hardware complexity and power
consumption [1][2]. A hopeful approach to
mitigate these challenges is the use of low-
resolution analog-to-digital converters (ADCs),
including 1-bit ADCs. These ADCs are highly
energy-efficient and simpler in structure, making
them a smart choice for practical implementations

[31[415].

i Corresponding author: Email p.dumka.ipec@gmail.com (P. Dumka)

methods often require long pilot sequences, which
enforce substantial overhead and limit their
practicality in large-scale systems. To address
these challenges, researchers have projected a
variety of approaches, ranging from classical
signal processing techniques to machine learning-
based solutions [6-9]. However, these methods
either demand extensive training overhead or are
limited to small-scale systems or low-dimensional
constellations. In [10], the authors proposed a
lightweight and effective strategy to reduce the
overhead of downlink channel estimation and
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feedback by utilizing linear regression (LR) and
support vector regression (SVR) within a machine
learning framework. The problem of channel
estimation becomes particularly critical in
beamspace millimeter-wave massive MIMO
systems, especially when the receiver is
constrained by a limited number of radio-
frequency (RF) chains [11]. To overcome this
limitation, an efficient online CSI prediction
scheme, termed OCEAN, was introduced in [12].
This framework exploits historical channel data to
predict future channel states, thereby enhancing
the efficiency of 5G wireless communication
systems.

The main objective of this study is to apply
deep learning to address the difficulties associated
with channel prediction in large MIMO systems
with 1-bit ADCs. Therefore, a deep learning-based
framework is presented (a novel approach) and
tailored to estimate channels from quantized
measurements, in contrast to previous work that
focuses primarily on data detection or depends on
assumptions like full-resolution ADCs or
constrained system dimensions. Our approach not
only reduces the dependence on long pilot
sequences but also reveals an interesting finding:
increasing the number of antennas at the base
station can develop channel estimation
performance while requiring fewer pilot symbols.
This counterintuitive result, which has been
demonstrated analytically and verified by
simulations, highlights the prospective of
combining low-resolution ADCs with advanced
deep learning techniques to open the full benefits
of massive MIMO systems. To optimize the
model's effectiveness, hyper-parameters are better
tuned using three optimization algorithms namely
Adaptive moment estimation (Adam), root mean
square propagation (RMSprop) and stochastic
gradient descent with momentum (SGDm) during
training. As a result, the ideal parameter settings
are recognized that substantially improve the
efficiency of channel estimation performance.

The rapid growth of the massive MIMO
systems on one hand enables high data rates and
connectivity but on the other hand presents
significant  challenges related to energy
consumption. Traditional channel estimation
methods, such as MMSE and LS, require many
pilot signals and intensive computational
resources which may lead to an increased transmit
energy, a higher processing power demands at the
base station, and an inefficient spectrum use. This
research introduces a deep learning-based
approach to address these limitations. By utilizing
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the learning capabilities of the neural networks to
accurately estimate the channel state information
(CSI) with significantly fewer pilots, not only
reduce pilot overhead has been reduced but the
transmission energy has also lowered the
computational load. Thus, resulting in a more
energy-efficient system. This green approach to
wireless communication has directly contributes
to a reduced carbon footprint, less RF pollution,
and the sustainable deployment of the
technologies for smart cities and IoT applications.
Thus, the article aligns with the broader global
goals for the environmental protection and
sustainable energy use.

2. Theoretical background

2.1. System architecture

The described system involves a massive
MIMO base station (BS) equipped with M
antennas, communicating with K single-antenna
user equipments (UE). The BS employs 1-bit
analog-to-digital converters (ADCs) in the
receiver unit. The system operates in a time-
division duplexing (TDD) mode, where uplink
channel learning is used to estimate the channel,
which is then utilized for downstream data
communication. The uplink involves the UE
transmitting a pilot sequence (x € NxK), where N
denotes the pilot sequence length [13][14]. After
the ADC quantization, the received signal at the
BS can be represented as:

Y = sgn(hxT+w) (D)
W ¥
d ’ﬁ‘
User W, Yo
Equipm | el ) 1bit Base- Deep
et (UE) | vetor . ADCs |, Band learning
h H : Processi Y based
ng Channel
(L Wy Y Estimator
N

Figure 1. Massive MIMO architecture

Where h € MxK is channel vector between
the base station antennas and the user equipment,
w € (0,6%) is the AWGN noise. The transmitted
pilot sequence achieves E[xx"] = P{I with Py as the
average transmit power per symbol. The received
signal Y is the MxN quantized estimation matrix
consisting of the obtained pilot signals.

2.2. Channel model and estimation
The channel model assumes that the signal
transmission between the user and the base station
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(BS) occurs via L paths, each characterized by a
complex gain 6; and an angle of arrival ¢;. The
channel vector h is expressed as:

h =Yl 6,a() ()

where a (¢;) represents the BS's array
response vector for the angle of arrival.

For channel estimation, the BS processes the
quantized received signal matrix Y to construct an
estimated channel vector h. The TDD mechanism
ensures channel reciprocity, allowing the uplink
channel estimation to support both uplink and
downlink operations. This setup enables efficient
communication despite the 1-bit ADC constraint
by leveraging uplink pilot sequences for channel
estimation.

Considering the estimated channel vector, the
downlink beamforming vector f is designed using

conjugate beamforming, expressed as f= ﬁ .
With this approach, the downlink SNR per
transmit antenna can be expressed as:

)

This paper explores the development of an
efficient channel estimation approach to
reconstruct the channel vector h from the
exceedingly quantized received signal Y. Our
objective is to create a channel estimation method
that minimizes the normalized mean-squared error
(NMSE) between the estimated and actual
channel vectors, which is defined as follows,
assuming that the base station (BS) is aware of the
pilot sequence x:

~n2
I — &

TE @

NMSE = E[

The term ||h—ﬁ||2 represents the squared
difference between the actual value h and its
estimated valueh while E denotes the expected
value function.

3. DL based channel estimation

Traditional channel estimation (CE) methods
for massive MIMO systems among low-resolution
ADCs often rely solely on quantized received
signals, ignoring prior observations. These
methods, such as those discussed in previous
studies, estimate the channel directly from these
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signals. However, channel -characteristics are
inherently influenced by environmental factors
like geometry, materials, and transmitter/receiver
positioning. Consequently, base stations (BSs)
operating in similar environments are likely to
encounter comparable channel conditions
repeatedly. This insight suggests that leveraging
prior experience can reveal the relationship
between quantized received signals and channels,
potentially reducing the required pilot length. This
study proposes employing deep learning model to
align quantized received measurements to the
channel vector while wusing shorter pilot
sequences. By learning from prior channel data,
the proposed method aims to minimize the NMSE
between the estimated and true channels.

Additionally, scaling the quantity of antennas
in massive MIMO systems is observed to decrease
the required pilot length. Prior research highlights
correlations between channels of adjacent
subcarriers, which can degrade performance if
pilots are simultaneously assigned to these
subcarriers. To mitigate this, the proposed
approach seeks to enhance diversity and reduce
subcarrier correlation while maintaining efficient
channel estimation.

3.1. Connecting quantized measurements to
channels

Consider an indoor or outdoor configuration
where a single-antenna user is served by a
massive MIMO base station (BS), as outlined
above. Let h represent the set of potential
channels for the user, determined by the user's
possible  locations and the surrounding
environment. Additionally, let Y denote the
corresponding quantized measurement matrices
associated with the channel set h and a given pilot
sequence x. The relationship between the
quantized measurement matrices and the

channels, represented by y:{Y}— {h}. If the
mapping between the quantized measurement
matrix Y and the channel vector h is established
and known, it can be utilized to predict h. Thus,
the goal is to confirm the existence of this
mapping by using Postulate 1 and to describe the
process to help us better comprehend it.

Postulate 1: The channel and the system
model for the suggested study, as discussed
earlier, are considered as:

h =Xl 6ia(@)) )
Y = sgn(hxT+w) (6)
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In above equation, if the value of w is
assumed as zero. With the potential channels h,
the angle 6 can be defined as

min
max
0= th: hv € {h} vm |L[hu]m - L[hv]ml (7)
u#v

The mapping function vy (.) exists if the pilot
sequence x is built with a length N that satisfies N
> 1 /20 and the uniformity of the pilot complex
symbols' angles sample the range [0, m/2].

According to Postulate 1, when the pilot
sequence is created using the precise framework
described in the postulate, a one-to-one mapping
y(.) exists, enabling the quantized measurement
matrix Y to predict the channel h. Notably, only a
small number of pilot symbols (a very small N)
are required in massive MIMO systems to
establish this mapping y(.) with high probability.
This can significantly reduce channel training
overhead compared to traditional 1-bit ADC
channel estimation methods.

However, utilizing this mapping function
requires knowledge of its structure, which is
challenging to determine analytically due to the
complexity of the non-linear quantization process.
To address this, we propose leveraging the
advanced learning capabilities of deep neural
networks to learn this mapping, unlocking the
potential to considerably minimize channel
training overhead. The next subsection highlights
the suggested deep learning-based 1-bit ADC
channel estimation method in massive MIMO
systems.

3.2. Proposed model

To use deep learning's potent capabilities,
more especially, fully-connected neural network is
chosen to convert the quantized incoming signal
back into complex-valued channels. These
networks are recognized for their effectiveness as
function approximators, and thus, we propose and
train a dense neural network to discover the
mapping from quantized measurements to the
corresponding channels.

Network model and training: The designed
network consists of three dense layers. The first
two layers are wide and include a fully-connected
layer, a non-linearity layer, and a dropout layer,
with each fully-connected layer containing LNN
neurons followed by ReLU (rectified linear unit)
activations. The final output layer consists of a
fully-connected layer with 2M neurons. The
network is framed as a regression problem,
aiming to estimate user channels by minimizing
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the NMSE loss function, which measures
prediction accuracy. The network is trained using
the ADAM optimizer, with the average NMSE
minimized over training.

Data pre-proccesing and preparation: For
effective learning, the network inputs and outputs
are pre-processed prior to training. The first step
involves normalizing the channels in both the
training and testing datasets to the range [—1,1],
by means of the maximum absolute channel value
from the training set. This normalization has
proven effective in previous studies. The second
step involves vectorizing the quantized received
measurement matrices into MNx1 vectors. Since
most deep learning frameworks work with real-
valued  computations, the channel and
measurement vectors are then split into real and
imaginary components and flattened into 2Mx1
and 2MN-dimensional vectors, respectively.

The simulation utilizes the I1 2p4 indoor
massive MIMO scenario from the DeepMIMO
dataset, which is generated using Wireless InSite
the 3D ray-tracing simulator. This scenario
features users positioned on two x-y grids within a
10mx10m indoor space containing two tables,
operating at 2.5 GHz. The dataset includes
channels between potential user locations and
antennas at the base station (BS)[16-18].

Key settings for the DeepMIMO scenario are
as follows:

e Scenario: [1_2p4

¢ 32 active BS antennas located at (1, 100, 1)

in (x,y,z) coordinates

® 502 active users (row 1 to 502)

e System bandwidth: 0.01 GHz

e Single-carrier OFDM (1 sub-carrier)

¢ 10 multipaths

The dataset is shuffled and split into 70% for
training and 30% for testing. Training datasets are
generated for signal-to-noise ratio (SNR) values
ranging from 0 to 30 dB, divided into seven
intervals: 0, 5, 10, 15, 20, 25, and 30 dB. These
datasets are then used to train the deep learning
model, and the proposed model's efficacy is
evaluated.

4. Results and observations

In this section, the effectiveness of the
suggested deep learning-based channel estimation
(CE) technique for large MIMO systems with 1-
bit ADCs is assessed. The approved scenario,
chosen dataset, and simulation parameters are
outlined, followed by a discussion of the results.
The suggested model outperforms other methods
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in a variety of simulated scenarios by utilizing the
deep neural network's sophisticated learning and
sequence prediction capabilities.

Training and Testing of suggested model:
Two hidden layers of a fully-connected network
with 8192 neurons each are used in our
simulations. The quantity of base station (BS)
antennas and pilot symbols determines the size of
the input and output layers. For instance, the input
size is 1000 and the output size is 100 when 50
antennas and 5 pilot symbols are used. Training
samples are organized as (y, h) where y represents
the input and h the target channel, with each
sample equivalent to a randomly selected user
from two grids.

The network is trained on 105,981 samples
for 100 epochs, with noise added during training
across an SNR range of 0-30 dB. To ensure fair
comparisons, the network structure and training
parameters remain consistent across simulations,
except for input and output dimensions. The
training process utilizes the Adam optimizer and
explores various learning rates and minibatch
sizes. All simulations are conducted in MATLAB
R2020a on a system with a 12th Gen Intel Core
17-12700 CPU and an Nvidia RTX 3060 GPU.

Now, we test the effectiveness of our
suggested deep learning-based channel estimate
technique in the context of uplink massive MIMO
discussed in previous sections.

Effect of pilots: Figure 2 highlights that the
NMSE performance of the proposed solution
improves significantly with an increase in the
number of antennas at the base station (BS).
During this evaluation, noise samples are added to
the measurement matrices used in both the
training and testing phases of the suggested
model. In Fig.2, with pilot length N=3, the NMSE
progressively improves relative to the number of
antennas M. A similar pattern is observed for pilot
lengths N = 5, 7 and 10 where the NMSE
performance  shows  further  improvement
compared to N=3, particularly for lower values of
M. This enhancement enables highly accurate
channel predictions using only a small number of
pilot symbols (N), setting it apart from traditional
channel estimation methods like expectation-
maximization  Gaussian-mixture  generalized
approximate message passing (EM-GM-GAMP).
As in wireless communication systems, pilot
symbols are essential for estimating the channel
state information (CSI), but they consume
valuable bandwidth and reduce spectral efficiency
if used in large quantities. Traditional channel
estimation methods, such as Expectation-
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Maximization = Gaussian-Mixture  Generalized
Approximate Message Passing (EM-GM-GAMP),
generally require a larger number of pilots to
maintain reliable estimation accuracy. This makes
them less efficient in scenarios where minimizing
pilot overhead is critical, such as massive MIMO
systems with hundreds of antennas.

In contrast, the deep learning-based model
presented here effectively captures the underlying
nonlinear mapping between quantized pilot
measurements and the actual channel coefficients.
By learning this complex relationship directly
from data, the model can operate reliably with
significantly fewer pilot symbols while still
maintaining (or even surpassing) the accuracy of
traditional methods.

For the adopted dataset, the minimum 6 (in
radians) calculated using Equation (7) is
3.07x10—5 for a system with 3 antennas and
0.2476 for a system with 100 antennas. This
demonstrates the potential of the deep learning-
based approach, which achieves accurate channel
estimation with very short pilot sequences in
massive MIMO systems. Additionally, while
Postulate 1 indicates a large pilot requirement for
full bijectiveness in systems with fewer antennas,
the proportion of channels requiring extended
pilots is minimal. For instance, with just 5 pilots,
98% of the dataset's channels are distinguishable,
increasing to 99.5% with 10 pilots. These results
explain the effectiveness of the proposed solution
even with limited pilots.

10°

—©—Pilot length = 3
—— Pilot length = 5
—&— pilot length = 7
—=&—Pilot length = 10
~— Pilot length = 10(GAMP

1071

Normalized mean square error

10 20 30 40 50 60 70 80 90 100
Number of Antennas

Figure 2. NMSE vs Number of antennas

Figure 3 examines the SNR per antenna, as
defined in Equation (3), for various pilot lengths
and antenna numbers, with a fixed received
measurement matrix SNR of 0 dB. Despite a
plunge in performance for systems with a small
number of antennas, the predicted SNR per-
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antenna approaches the upper bound as the
antenna count increases. This upper bound is
achieved using a conjugate beamformer designed
with exact channel knowledge, even with only 3
pilots (N=3). The performance results reveal a
noticeable dip in accuracy for smaller antenna
counts (particularly when the pilot length is
limited to N = 3 or N = 5). This degradation can
be attributed to a mismatch between the total
Signal-to-Noise Ratio (SNR) improvement and
the rate of antenna increase. In simpler terms,
when the number of antennas is still small, the
gain in overall SNR does not fully compensate for
the limited amount of pilot information, which
leads to a less reliable channel estimation.
However, this performance dip gradually
diminishes as either the pilot length (N) or the
number of antennas (M) increases. With more
pilots, the system obtains additional reference
information about the channel, which reduces
ambiguity in the estimation process. Similarly,
increasing the number of antennas enhances
spatial diversity, which improves the robustness of
the mapping between the observed quantized
signals and the underlying channel characteristics.

-

—©—Pilot length=3

o =) =)
©o 2 wvw 2
N © ® ©o ©
o =3 @ © (3]

= Pilot length=5
—&—Pilot length=7
—#—Pilot length = 10
0.965 - —+—Upper Bound

Predicted SNR per Antenna
o
©
]

10 20 30 50 70 100
Number of Antennas

Figure 3. Predicted SNR vs Number of antennas

Effect of Optimization algorithms:
Selecting the optimal optimization method for
addressing a specific problem is a complex task.
Achieving the best performance for the channel
estimation (CE) model with minimal pilot
overhead requires evaluating the effectiveness of
various optimization techniques for the given
model and dataset. This section compares three
optimization methods to identify the most suitable
approach for CE issues: Adaptive moment
estimation  (Adam), Root mean square
propagation (RMSprop), and Stochastic gradient
descent with momentum (SGDm) [14][15].
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Figure 4 presents the NMSE performance of
the suggested model with these three optimization
techniques, evaluated across varying numbers of
antennas (M) and pilot configurations (N=5 and
10). For antenna sizes upto M=20, both Adam and
RMSprop show nearly identical NMSE
performance across pilot lengths. In contrast,
SGDm lags behind, with noticeably worse
estimation accuracy. Additionally, for pilot length
N=5, the performance of Adam and RMSprop
show comparable results, meaning both
optimizers are effective with a limited number of
pilots. While for pilot length N=10, Adam
consistently outperforms both RMSprop and
SGDm across all antenna sizes, achieving the
lowest NMSE values. Therefore, the Adam
optimizer has been chosen for all of the
simulations due to its reliable and excellent
performance.

107 |

—©— Pilot length = 5(Adam)
—k— Pilot length = 5(RMSprop)
— Pilot length = 5(SGDm)

Pilot length = 10(Adam)
—&— Pilot length = 10(RMSprop)
—&— Pilot length = 10(SGDm)

102

Normalized mean square error
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Figure 4. NMSE performance of the proposed
model

5. Conclusion

This research paper presents a deep learning-
based channel estimation (CE) framework for
massive MIMO systems using 1-bit analog to
digital converters (ADCs). The study determines
the structure and minimum length of pilot
sequences (PS) required to ensure a mapping from
quantized measurements to channels, showing
that fewer pilots are needed as the number of
antennas increases. Both analytical and extensive
simulation results confirm that only a small
number of pilots are sufficient for efficient
channel estimation, with achievable signal to
noise ratio (SNR) per antenna approaching the
upper bound as antennas scale up. To further
enhance performance, different deep learning
optimizers (such as SGD, Adam, and RMSProp)
are utilized that provide the highest accuracy with
the least pilot overhead. The system’s
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performance was evaluated in terms of
normalized mean square error (NMSE) and SNR
per antenna, under various pilot lengths and
antenna counts. Results consistently indicated that
the proposed DL-based CE outperformed
conventional methods, especially in low-
resolution ADC scenarios. Future research could
extend this approach to broadband systems with
frequency-selective channels and explore CE in
continuous angle spaces.
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