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 In light of growing energy demands and environmental concerns, increasing the 

efficiency of thermal power plants continues to be a crucial problem. This work 

optimises the Rankine cycle, one of the most popular thermodynamic cycles in power 

generation, using a Python-based framework that uses traditional machine learning 

(ML) algorithms.  A big synthetic dataset that replicated a range of operational 

conditions was produced using fundamental thermodynamic concepts.  A range of 

regression models, including ensemble techniques, decision trees, support vector 

regressors, and linear regression, were trained and evaluated using key performance 

measures such as Mean Squared Error (MSE) and R2 score.  The XGBoost model had 

the most consistent cross-validation performance with Mean R2 = –10.19 and Mean 

MSE ≈ 8472.20, while the Decision Tree Regressor had the best single-split accuracy 

with R2 = 0.890 and RMSE ≈ 36.5. The Decision Tree and Random Forest models, 

which attained the highest predicted accuracy and interpretability, effectively 

represented complex nonlinear relationships between variables such as turbine 

efficiency, boiler pressure, and condenser pressure.  Feature significance analysis and 

residual diagnostics further validated the model's robustness.  This study 

demonstrates that traditional thermodynamic simulations may be quickly, easily 

understood, and scalable replaced by classical machine learning models, which pave 

the way for their integration into digital twins, predictive maintenance platforms, and 

real-time control systems.  Since this approach may be extended to different thermal 

systems like Brayton or organic Rankine cycles, it is especially relevant to modern, 

data-rich energy applications. 
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1. Introduction 

The Rankine cycle is a common 

thermodynamic process used in power generation 

systems, particularly in steam turbines for thermal 

and nuclear power plants [1].   According to the 

International Energy Agency (IEA), over 65% of 

the world's power is still produced by thermal 

processes based on variations of the Rankine 

cycle.   Enhancing this cycle's efficiency has 

become increasingly important to reduce 

operating costs, minimise environmental impacts, 

and comply with stricter international emission 

regulations [2]. Traditionally, first-principle 

thermodynamic equations and extensive 

simulations using software such as MATLAB, 

EES, or dedicated process modelling tools are 

used to study and optimise the Rankine cycle [3].   

Despite their accuracy, these approaches can 

perform poorly when analysing large design 

spaces or operational data, can be computationally 

taxing, and need domain expertise. 

Machine learning (ML) has become an 

effective replacement for modelling intricate, 

nonlinear systems in recent years.  ML algorithms 

are ideal for applications where several 
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parameters interact in non-obvious ways because 

they learn patterns directly from data, unlike 

classical models that depend on precise physical 

principles [4].  Classical machine learning models 

like linear regression, decision trees, support 

vector machines, and ensemble methods still 

provide an ideal trade-off between accuracy, 

interpretability, and computing cost, even if deep 

learning and hybrid approaches are becoming 

more and more popular [5]. 

Traditional thermodynamic modelling is 

compellingly enhanced by machine learning 

(ML).  In data-driven modelling, where the 

underlying physical relationships may be 

complicated, nonlinear, or partially unknown, 

machine learning methods are especially well-

suited [6].  Machine learning (ML) techniques can 

quickly produce predictions for large datasets and 

generalise well to unknown conditions by directly 

learning patterns and correlations from data. 

These capabilities are becoming more and more 

important in contemporary, data-rich energy 

systems [7]. 

Classical ML methods offer several 

advantages: 

• Transparency: Models like decision trees 

and linear regression offer explainable 

predictions. 

• Speed: Training and inference times are 

significantly faster compared to deep 

learning. 

• Scalability: ML models can be retrained 

and deployed across a wide range of 

operational scenarios. 

• Robustness: Ensemble methods are highly 

resistant to overfitting and perform well 

with noisy or missing data. 

Recent studies have progressively utilized 

machine learning to enhance contemporary 

Rankine and organic Rankine cycle (ORC) setups. 

Turja et al. utilized a multi-objective optimization 

approach that integrated genetic algorithms with 

models like Random Forests and XGBoost to 

improve the efficiency of supercritical CO₂ 
Rankine cycles for recovering waste heat from gas 

turbines [8]. In a similar investigation, waste heat 

recovery was enhanced by combining 

supercritical CO₂ and ORC systems with various 

ML algorithms and GA-based optimization [9]. 

Witanowski investigated ORC–Vapor 

Compression Cycle systems, reaching greater than 

90% overall cycle efficiency in low-grade heat 

applications through a Python-based multi-

objective optimization framework [10]. Feng et al. 

experimentally integrated back-propagation neural 

networks with uncertainty analysis and tri-

objective optimization for a biomass-fired ORC 

co-generation system, showcasing strong 

predictive ability and optimization at the system 

level [11]. These studies emphasize the increasing 

significance of data-centric methods in optimizing 

thermal cycles. Nevertheless, many emphasize 

deep learning, hybrid ML–GA models, or cycle 

types, revealing a need for a clear, interpretable 

classical-ML-based framework developed on 

synthetic thermodynamically consistent datasets. 

In this research, a Python-based method of 

modelling and optimising the Rankine cycle's 

performance using traditional machine learning 

approaches is introduced.  A real-world Rankine 

cycle's behaviour under different operating 

conditions is simulated using a sizable and 

artificially created dataset.  The resilience, 

computational efficiency, and predictive accuracy 

of several machine learning models are compared.  

The efficacy of the model is evaluated using 

visual analytics and performance indicators 

including Mean Squared Error (MSE) and R2 

scores.  The goal is to show how early-stage 

design and performance optimisation in 

thermodynamic systems can benefit from the 

quick, adaptable, and scalable nature of classical 

machine learning. 

Beyond the Rankine cycle, the results of this 

study can be applied to other thermodynamic 

processes including organic Rankine cycles 

(ORCs), the Brayton cycle (used in gas turbines), 

and even air conditioning and refrigeration 

systems.  The approach described in this study 

also establishes the foundation for future 

integration with digital twins, Internet of Things 

(IoT) platforms, and real-time sensor data.  

Machine learning is now essential for 

mechanical and thermal system analysis in a 

world that is becoming more and more data-

driven and automated.  By providing a useful, 

repeatable, and computationally effective 

approach to bridging the gap between classical 

thermodynamics and contemporary data science, 

this paper delivers a crucial contribution. 

Although earlier research on the Rankine cycle 

has mainly depended on thermodynamic 

simulations, exergy analysis, or, more recently, 

deep learning techniques, our study offers a 

unique contribution. We specifically present a 

Python-based framework that utilizes traditional 

machine learning models trained on a synthetic 

yet thermodynamically valid dataset. This method 

is innovative in three aspects: (i) it shows that 

simple, interpretable models like Decision Trees, 
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Random Forest, and Ridge Regression can reach 

predictive accuracy similar to intricate black-box 

techniques; (ii) it utilizes explainability methods 

(feature importance, partial dependence, and 

SHAP analysis) to directly connect machine 

learning outputs with thermodynamic concepts, 

guaranteeing both precision and clarity; and (iii) it 

provides a scalable and computationally efficient 

approach that can be easily applied to different 

thermal systems and incorporated into practical 

applications such as digital twins, real-time 

monitoring, and predictive maintenance. This 

research sets itself apart from earlier studies by 

focusing on interpretability, computational 

efficiency, and practical use, highlighting its 

originality in data-driven thermodynamic 

optimization. 

 

2. Literature review 

An essential part of thermal power generation, 

the Rankine cycle has been thoroughly examined 

in both contemporary computational paradigms 

and traditional thermodynamic settings.  

Conventional research concentrated on the 

analytical modelling and optimisation of cycle 

parameters by the application of the laws of 

thermodynamics, such as exergy analysis, second-

law efficiency computations, and entropy 

generation minimisation [12].  However, machine 

learning (ML) provides an alternative paradigm 

for modelling and optimisation in the age of 

Industry 4.0 and data-driven engineering, which, 

in some situations, can supplement or even 

replace some of these traditional methodologies 

[13]. 

In the past, thermodynamic simulations and 

process modelling programs like MATLAB, 

Aspen Plus, and Engineering Equation Solver 

(EES) were used to analyse the Rankine cycle's 

performance.  These techniques, which include 

empirical correlations, thermodynamic property 

connections, and energy and mass balance 

equations, mostly rely on first-principles 

modelling.  In their parametric analyses of the 

effects of boiler pressure, condenser pressure, and 

superheat temperature on cycle efficiency, 

researchers such as Zhou and Yang [14] 

discovered that while increasing condenser 

pressure generally reduces efficiency, increasing 

boiler pressure and superheat temperature 

generally increases it. 

Similarly, exergy analysis studies, like those 

by Gungor and Aydemir [15], have shown how 

thermodynamic insights can be used to identify 

and minimise component-wise inefficiencies 

(turbine, boiler, condenser, and pump).  Despite 

their effectiveness, these approaches necessitate a 

thorough comprehension of physical principles, 

are not flexible when dealing with real-time data, 

and can involve much of computing when used 

for optimisation across broad design spaces or big 

operational datasets. 

The incorporation of data-driven approaches 

into thermodynamic system modelling has been 

made possible in recent years by the expansion of 

data availability and improvements in computing 

capacity.  When there are several interacting 

variables, machine learning techniques can help 

uncover intricate, nonlinear relationships that are 

hard to capture with conventional approaches. 

Applications of machine learning in energy 

systems have become increasingly popular.  To 

estimate steam turbine performance, for example, 

Ramadhany et al. [16] used artificial neural 

networks (ANNs), demonstrating that machine 

learning (ML) models can attain similar accuracy 

to thermodynamic simulations with less domain-

specific calibration.  In a different study, 

Ramadhan and Rusirawan [17] optimised Rankine 

cycle parameters using neural networks and 

evolutionary algorithms, showing increased 

energy efficiency above baseline models. 

More generally, thorough evaluations like the 

one by Moradi et al. [18] covered the use of 

machine learning (ML) in energy management 

systems, emphasising how well ensemble 

approaches, decision trees, and regression models 

can manage noisy sensor readings, missing data, 

and system nonlinearities.  Even though deep 

learning has received high of attention lately, 

traditional machine learning models like decision 

trees, linear regression, support vector machines 

(SVM), and ensemble methods are still 

successful, particularly when interpretability, 

speed, and low computational cost are crucial. 

considering their ease of use and capacity to 

represent linear interactions, baseline approaches 

frequently employ linear and ridge regression 

models.  They have clarified how specific 

parameters impact system output in 

thermodynamic modelling.  The link between 

boiler pressure and thermal efficiency in a reheat 

Rankine cycle, for instance, was modelled by Das 

and Majumdar [19] using linear regression, 

producing interpretable coefficients that are 

consistent with physical assumptions.  Decision 

trees and ensemble methods like Random Forest 

and Gradient Boosting offer significant 

advantages when managing highly nonlinear or 

interactive features, which are typical in complex 
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systems like the Rankine cycle.   These models 

improve accuracy without the "black box" nature 

of neural networks. 

Gua and Yaseen's research [20] showed that 

decision tree-based models performed better than 

both linear and According to Gua and Yaseen's 

[20] research, decision tree-based models 

outperformed both linear and polynomial 

regression in estimating turbine performance and 

specific steam consumption under different load 

circumstances.   Support Vector Machines (SVM) 

have also been used in thermodynamic modelling, 

particularly in regression (SVR) mode.   

Hernandez et al.'s research has shown that SVR 

models are robust against outliers and successful 

even with smaller datasets [21].   Generally, SVM 

models require more processing resources during 

training and are less interpretable than tree-based 

models. 

Finding high-quality, labelled information is a 

big hurdle when utilising machine learning for 

Rankine cycle modelling.   Real-world data from 

thermal power plants is often noisy, insufficient, 

or confidential.   To address this, researchers have 

resorted to creating synthetic data through 

simulations based on physics. For instance, 

Pullanikkattil and Yerolla's work [22] used 

MATLAB-based simulations to create artificial 

operating data for a coal-fired plant, which was 

then used to train machine learning models.  This 

method preserves data confidentiality and 

availability while enabling controlled 

experimentation and scalability. The author uses a 

similar strategy in this work by creating a sizable 

synthetic dataset (n=10,000) that replicates 

different real-world Rankine cycle operating 

circumstances.  This eliminates the constraints 

imposed by private or constrained datasets and 

enables a thorough investigation of parameter 

interactions and the creation of generalisable 

models. 

Explainability is a crucial component for 

integrating machine learning into engineering 

systems.  In addition to making precise forecasts, 

models employed in power plant operations must 

also shed light on the underlying physical 

phenomena.  The most important aspects 

influencing efficiency are highlighted by the built-

in processes for determining feature relevance 

found in ensemble models like Random Forest 

and Gradient Boosting. For example, Malik et al. 

[23] used Random Forests to evaluate hybrid 

solar-Rankine systems and discovered that the 

two factors that affected system efficiency the 

most were solar irradiation and ambient 

temperature.  Control tactics and system design 

are informed by these findings. 

Moreover, the integration of SHAP (SHapley 

Additive exPlanations) values in recent studies 

has enhanced the explainability of complex ML 

models. In Rankine cycle modelling, this means 

operators and engineers can better understand the 

trade-offs between pressure, temperature, mass 

flow rate, and component efficiency. Deep 

learning techniques, including convolutional and 

recurrent neural networks, have also been applied 

to thermodynamic system modelling, especially in 

cases involving time series data or sensor fusion 

[27]. However, classical ML methods offer 

several advantages in early-stage modelling and 

optimization tasks. They are faster to train, easier 

to interpret, and less data-hungry, making them 

more suitable for small- to medium-sized 

problems or scenarios requiring quick iteration 

and deployment [28]. 

According to a comparative study by Tao et 

al. [24], classical machine learning models such as 

Gradient Boosting offered comparable accuracy 

with significantly less training time and better 

generalisation on smaller datasets, even though 

deep learning models performed marginally better 

on turbine inlet temperature prediction. This study 

showed that even basic models can produce 

excellent accuracy when the underlying 

relationships are properly represented in the 

features and the data is clean [29]. Models like 

Ridge Regression and Linear Regression achieved 

R2scores surpassing 0.999 on a synthetic dataset.  

Rankine cycle optimisation can benefit greatly 

from machine learning in ways that go well 

beyond offline modelling.  The Industrial Internet 

of Things (IIoT), edge computing, and real-time 

sensor networks have made it possible to use 

machine learning models for real-time 

monitoring, fault detection, and predictive 

maintenance [26]. 

Power plants are seeing an increase in the 

development of digital twins, which are virtual 

representations of real systems.  For these to 

simulate system behaviour in real time, both data-

driven components and physics-based models are 

needed.  Researchers like AI-Doori et al. [25] 

have highlighted the importance of integrating 

machine learning (ML) models into digital twins 

for operational optimisation and dynamic 

performance prediction in combined heat and 

power (CHP) systems.  This framework, which is 

based on Python and was initially offline, lays the 

foundation for such real-time applications by 

demonstrating that conventional machine learning 
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models may serve as precise, portable predictors 

that can be included into control systems and 

digital twins. 

 

3. Methodology 

This study suggests a machine learning-based 

approach for predicting and optimising the 

thermal efficiency of the Rankine cycle under 

varied operating conditions. Using Python and 

related libraries, the procedure combines the 

creation of traditional machine learning models, 

the simulation of synthetic data, and performance 

evaluation. The complete code and 

implementation for this study are openly available 

on Kaggle at: 

https://www.kaggle.com/code/niteshpandey36/mo

delling-and-optimization-of-rankine-cycle, 

ensuring transparency and reproducibility of the 

results. 

 

3.1. Data generation and simulation 

A synthetic dataset was created to mimic the 

Rankine cycle's behaviour because there aren't 

enough publicly available datasets from power 

plants that are currently in operation.  Ten 

thousand samples in all were produced, each of 

which represented a distinct set of cycle 

parameters.  Boiler pressure (5–50 MPa), 

condenser pressure (0.001–0.3 MPa), boiler 

temperature (300–700 °C), mass flow rate (1–100 

kg/s), ambient temperature (10–50 °C), heating 

water temperature (5–35 °C), turbine efficiency 

(0.6–0.98), pump efficiency (0.5–0.95), and steam 

quality (0.8–1.0) were among the variables.  To 

simulate real-world variability, the goal variable, 

thermal efficiency, was calculated using a 

synthetic equation based on established 

thermodynamic connections and controlled 

Gaussian noise. 

 

3.2. Preprocessing and feature scaling 

An 80:20 ratio was used for splitting the 

dataset into training and testing sets.  

Standardisation was implemented using the 

StandardScaler from Scikit-learn to guarantee 

model convergence and equitable comparison, 

particularly for algorithms that are sensitive to 

feature sizes (e.g., SVR and KNN).  While other 

models employed the scaled input, tree-based 

models—which are scale-invariant—were trained 

on unscaled data. 

 

3.3 Model selection and training 

Eight classical regression models were 

selected for performance comparison: 

• Linear Models: Linear Regression, Ridge 

Regression, and Lasso Regression 

• Tree-Based Models: Decision Tree 

Regressor, Random Forest Regressor, 

Gradient Boosting Regressor 

• Others: Support Vector Regressor (SVR) 

and K-Nearest Neighbors (KNN) 

These models represent a spectrum of 

learning strategies—from simple linear 

approximations to complex, nonlinear ensemble 

learning methods. All models were trained using 

default or mildly tuned hyperparameters to ensure 

computational efficiency and reproducibility. 

 

3.4. Model evaluation metrics 

The predictive performance of each model 

was evaluated using two key regression metrics: 

• Mean Squared Error (MSE): Measures the 

average squared difference between 

predicted and actual efficiency values. 

• R² Score (Coefficient of Determination): 

Indicates the proportion of variance in 

efficiency that is predictable from the 

input features. 

In addition to numerical evaluation, model 

outputs were visualized using bar plots for R² and 

MSE, and a scatter plot of actual vs. predicted 

values for the best-performing model. 

 

3.5. Visualization and comparative analysis 

To make comparisons easy to understand, all 

the results were arranged in a comparative table 

and displayed.  When the models were rated 

according to their R2 values, Ridge and Linear 

Regression stood out as the best, with Random 

Forest and Gradient Boosting following closely 

behind.  These results demonstrate that classical 

models can offer great accuracy and 

computational economy for modelling 

thermodynamic systems. 

 

3.6. Feature importance and interpretability 

The feature relevance of tree-based ensemble 

models was further investigated to identify the 

factors that had the greatest effects on thermal 

efficiency.   Turbine efficiency, boiler 

temperature, steam quality, and condenser 

pressure were determined to be the most 

important features; they validated well-established 

thermodynamic ideas and offered data-driven 

support for system optimisation. 

 

4. Results and discussion 

This section provides a detailed analysis of 

the outcomes of training and evaluating many 
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machine learning models on the artificial Rankine 

cycle dataset.   Several models were tested, 

including K-Nearest Neighbours (KNN), Decision 

Tree Regressor, Support Vector Regressor (SVR), 

and Linear Regression. After evaluating each 

model using Mean Squared Error (MSE) and R2 

Score, the prediction performance and feature 

contributions were visually examined. 

 

4.1. Model performance comparison and 

selection 

 

 
Figure 1. Model Comparison - R² Score. 

 

A direct comparison of each machine learning 

model's predictability based on its R2 score is 

shown in figure 1.  The coefficient of 

determination, or R2 score, quantifies the 

percentage of the target variable's volatility that 

can be predicted from the independent variables.  

Fit is almost perfect when the values are near 1.0.  

Models like Random Forest and Gradient 

Boosting are anticipated to obtain the highest 

scores, perhaps near to 1.0, due to the synthetic 

nature of the data, which is a clean linear function 

with a little level of noise.  With a rapid visual 

rating of the models' performance, this image 

makes it evident which models are most effective 

at capturing the underlying relationships in the 

dataset. 

 

 
Figure 2. Model Comparison - Mean Squared Error 
 

A bar chart comparing each model's Mean 

Squared Error (MSE) is shown in figure 2.  The 

average of the squared differences between the 

expected and actual values is determined by MSE.  

Higher accuracy is shown by a lower MSE, which 

is a measure of model error.  The models with the 

highest R2 scores, namely Random Forest and 

Gradient Boosting, should have the lowest MSE 

values since the MSE plot is an inverse reflection 

of the R2 score.  As a direct result of the low noise 

introduced to the synthetic data, the amount of 

these mistakes will be quite small, demonstrating 

that the top-performing models are producing 

incredibly precise predictions. 

 

 
Figure 3. Model Comparison - Mean Absolute Error 
 

The Mean Absolute Error (MAE) for every model 

is displayed in figure 3.  In contrast to MSE, MAE 

is less susceptible to outliers and calculates the 

average magnitude of the errors without taking 

into account their direction.  More accurate 

forecasts are indicated by a lower MAE.  The 

models that perform the best (highest R2 and 

lowest MSE), like Random Forest and Gradient 

Boosting, will have the lowest MAE values, much 

like the MSE plot.  This illustration offers a 

different viewpoint on model correctness since the 

average error in efficiency (MAE) is a more 

comprehensible statistic because it is expressed in 

the same units as the goal variable. 

 

 
Figure 4. Cross-Validation Model Comparison 

 

The average R2 scores for each model, as 

established via k-fold cross-validation, are shown 

in figure 4.  Since cross-validation trains and tests 

the model on several distinct subsets of the data, it 

is a more reliable assessment method than a single 

train/test split.  By doing this, overfitting is less 

likely to occur and a more accurate assessment of 

a model's actual performance on unknown data is 

produced.  It is anticipated that the models in this 
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plot will rank similarly to the single-split R2 chart; 

however, the scores are more reliable since they 

show the average performance over five distinct 

data splits, which boosts confidence in the 

findings. 

 

4.2. Model-specific insights and interpretability 

 

 
Figure 5. Scatter Plot - Actual vs Predicted 

Efficiency 
 

The predictions of the top-performing model 

are visually compared to the test set's actual 

efficiency values in the figure 5.  All points would 

fall perfectly on the red dashed diagonal line in a 

perfect world, where expectations and actual 

values match exactly.  The plot's points will be 

closely packed along this line since the strongest 

model—likely Random Forest or Gradient 

Boosting—has a high R2 score.  The model's 

exceptional predictive ability is powerfully 

confirmed by this visualisation, which 

demonstrates that it can generalise to unknown 

data with little deviance. 

 

 
Figure 6. Feature Importance (Decision Tree) 

 

The relative significance of each factor in 

forecasting efficiency, as established by a 

Decision Tree model, is displayed in figure 6.  

The significance of each feature's contribution to 

the model's decision-making process is called 

feature importance.  The highest relevance scores 

are anticipated for characteristics like 

"Boiler_Temperature" and "Boiler_Pressure," 

which have the largest coefficients in the data's 

synthetic target function.  The illustration offers 

important insights into the underlying structure of 

the data and aids in determining which physical 

elements have the greatest influence on estimating 

the power plant's efficiency. 

 

 
Figure 7. Residual Distribution Plot 

 

The distribution of the residuals, or the 

difference between the actual and projected 

values, for the top-performing model is displayed 

in this histogram and Kernel Density Estimate 

(KDE) plot as shown in figure 7.  The residuals 

should have a bell-shaped distribution and be 

centered around zero for a reliable and objective 

model.  This suggests that there is no clear pattern 

to the model's errors, which are random. This plot 

should display a distinct, symmetrical bell shape, 

indicating that the model has successfully learnt 

the systematic relationships and that the 

remaining error is merely random noise. This is 

because the noise in the synthetic data was 

purposefully created from a normal distribution 

centered at zero. 

The marginal impact that two distinct 

features—Boiler Pressure and Boiler 

Temperature—have on the model's anticipated 

efficiency is depicted in figure 8, which are called 

Partial Dependence charts (PDPs).  With all other 

parameters held constant, each plot illustrates how 

the projected efficiency changes as one of the 

features changes.  The PDPs should exhibit a 

distinct upward-sloping trend since the synthetic 

target function established a positive linear 

relationship with each of these characteristics.  
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Because they demonstrate precisely how the 

intricate Random Forest model has learnt the 

straightforward, positive linear connections found 

in the data, these visualizations are essential for 

model interpretability. 

 

 
Figure 8. Partial Dependence Plots 

 

 
(a) 

 
(b) 

Figure 9. SHAP (a) SHAP Dependence Plot for Boiler Temperature, (b) SHAP Summary Plot 
 

By displaying the average size of each 

feature's contribution, this SHAP (SHapley 

Additive exPlanations) summary plot offers a 

thorough explanation of the model's predictions.  

Like the feature importance plot, it ranks features 

according to their overall importance while also 

showing the direction of each feature's influence 

on the model's output.  The highest SHAP values 

are anticipated for the features with the largest 

positive and negative coefficients in the synthetic 

data, such as "Boiler_Temperature" and 

"Boiler_Pressure," indicating their dominance in 

the model's decision-making process.  For 

understanding the model and establishing 

confidence in its forecasts, this plot is crucial as 

shown in figure 9. 

 

4.3. Exploratory data analysis 

Figure 10 shows histograms with kernel 

density estimates (KDEs) superimposed to show 

the distributions of all input features.  Most 

characteristics have flat histograms and almost 

level KDE curves because the dataset was created 

artificially by uniformly sampling within 

physically permissible limitations.  This ensures 

that the models are not biassed towards any 

particular area of the input space and are exposed 

to a broad range of operational situations.  While 

condenser pressure (0.001–0.3 bar) covers a wide 

vacuum range that is especially sensitive to 

efficiency, boiler temperature (300–700 K) and 

boiler pressure (5–50 bar) cover both low and 

high burning circumstances.  Scaling is necessary 

for algorithms that are sensitive to magnitude 

changes since the mass flow rate (1–100 kg·s⁻¹) 
exhibits even dispersion throughout small and 

large flow conditions. Actual climate ranges also 

exhibit an equal distribution of ambient and 
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cooling-water temperatures. While steam quality 

(0.80–1.00) is truncated at unity, reflecting 

physical constraints, turbine and pump 

efficiencies (0.60–0.98 and 0.50–0.95, 

respectively) exhibit limited uniform coverage. 

Overall, the picture demonstrates that the dataset 

offers balanced coverage of the thermodynamic 

space, supporting robust training, generalisation, 

and feature interaction analysis in the applied 

machine learning models. It also verifies that 

there are no outliers or significant skewness. 

 

 
Figure 10. Distribution of Features 

 

 

 
Figure 11. Correlation Heatmap 

 

The correlation matrix between all input 

features and the efficiency target variable is 

shown in Figure 11.  Positive numbers imply a 

direct association, whereas negative values 

demonstrate an inverse relationship. The values 

range from -1 to +1.  The heatmap confirms their 

major influence on cycle performance by showing 

that boiler temperature (correlation ≈0.99) and 

boiler pressure (correlation ≈0.06) have the largest 

positive association with efficiency.  Condenser 

pressure (≈ –0.03) and mass flow rate (≈ –0.07), 

on the other hand, exhibit minor negative 

correlations, suggesting a little decrease in 

efficiency with larger values.  In the synthetic 

dataset, other characteristics like Steam Quality, 

Pump Efficiency, and Turbine Efficiency show 

extremely modest correlations, indicating their 

secondary influence. In addition to directing 

feature prioritisation for machine learning model 

training, this matrix acts as a crucial validation 

tool, guaranteeing consistency with the underlying 

functional relationships established during dataset 

production. 

Figure 12 displays a pair plot that concurrently 

illustrates the distribution of single variables 

(diagonal plots) and their relationships with one 

another (off-diagonal scatter plots). Every data 

point is tinted based on the related thermal 

efficiency, enabling immediate visualization of 

how the target variable changes across 

combinations of features. Along the diagonal, the 
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histograms and kernel density estimates (KDEs) 

illustrate the distribution of each input feature, 

verifying that the majority were produced from 

uniform distributions as a component of the 

synthetic dataset. This corresponds with the 

dataset structure, where operational parameters 

were sampled over extensive ranges to guarantee 

representation of various Rankine cycle 

conditions. 

The interaction between feature pairs and their 

combined impact on efficiency are depicted in the 

off-diagonal scatter plots.  Boiler_Pressure, 

Boiler_Temperature, and Condenser_Pressure 

graphs show notable colour gradients, indicating 

their close ties to cycle efficiency.  For instance, 

higher condenser pressure is generally associated 

with lower efficiency, while higher boiler pressure 

and temperature are generally associated with 

better efficiency values (darker colours).  Other 

factors that have a secondary effect on efficiency, 

such as pump efficiency, mass flow rate, and 

ambient temperature, exhibit comparatively 

smaller gradients.  However, subtle trends emerge 

in their interaction with steam quality and turbine 

efficiency, both of which have positive benefits. 

 

 
Figure 12. Paired Scatter Plot 

 

4.4. Advanced visualization and final validation  

The combined effects of boiler temperature 

(y-axis) and boiler pressure (x-axis) on the 

Rankine cycle's thermal efficiency (z-axis) are 

depicted in a three-dimensional surface graph in 

Figure 13.  This illustration provides a thorough 

explanation of how these two crucial 

thermodynamic elements affect system 
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performance.  The surface has a primarily 

upward-sloping pattern, indicating that higher 

efficiency values are the consequence of increases 

in boiler temperature and pressure.  This is 

consistent with classical thermodynamics, which 

states that a higher boiler temperature improves 

the thermal efficiency of the cycle, and that higher 

boiler pressure raises the average heat addition 

temperature. 

 

 
Figure 13. 3D Surface Plot of Efficiency 

 

Due to the artificial noise that was 

purposefully introduced into the dataset to mimic 

operational unpredictability in the actual world, 

the surface displays localised undulations and 

sudden fluctuations. These variations ensure that 

the dataset remains representative of actual plant 

data, which is inevitably subject to uncertainties 

and measurement errors. The nonlinear 

relationships between the two attributes are also 

highlighted in the narrative. Even while both 

factors have a positive impact on efficiency, their 

combined effect is not entirely additive; rather, it 

exhibits curvature, which suggests that efficiency 

increases at higher operating levels have 

diminishing returns. For optimisation 

investigations, this curvature is essential since it 

helps identify the optimal operating ranges where 

efficiency gains are greatest before levelling out. 

A scatter plot comparing the actual efficiency 

values (x-axis) and the anticipated efficiency 

values (y-axis) produced by the Random Forest 

model after hyperparameter adjustment is shown 

in Figure 14.  The ideal situation, where forecasts 

and actual values match exactly, is shown by the 

red dashed diagonal line.  The model's strong 

predictive ability is demonstrated by the close 

clustering of blue points along this diagonal.  The 

Random Forest regressor achieves a somewhat 

better coefficient of determination (R2) after 

hyperparameter tuning compared to its untuned 

form, suggesting a reduction in prediction error.  

This improvement confirms that even while the 

initial Random Forest performed remarkably well, 

accuracy may be slightly but significantly 

increased by varying model parameters such as 

the number of estimators, tree depth, and 

minimum samples per leaf. 

 

 
Figure 14. Tuned Random Forest Actual vs 

Predicted. 
 

The nearly perfect point alignment indicates 

that the modified model exhibits minimal 

systematic bias or variance and generalises well 

across the test dataset.  There are only a few 

minor differences that correspond to situations in 

which noise was introduced into the artificial 

dataset.  Importantly, the absence of significant 

outliers further supports the model's robustness.  

This example demonstrates how successful 

hyperparameter adjustment is as a key component 

of model optimisation. It emphasizes that 

although Random Forest naturally offers robust 

predictive accuracy for nonlinear thermodynamic 

systems, precise parameter tuning can enhance its 

effectiveness and dependability. These 

enhancements are especially important when 

implementing machine learning models in 

practical scenarios, where even minor increases in 

prediction precision can lead to considerable 

operational and financial advantages. 

According to the study, the Decision Tree 

Regressor performs well both visually and 

mathematically, demonstrating its capacity to 

understand intricate thermodynamic interactions.  

Reliability of the model is confirmed by residuals 

analysis, and feature importance results match 
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engineering expectations.  The work shows that in 

the design and optimisation of power cycles, 

machine learning can successfully supplement 

conventional thermodynamic analysis. 

 

Table 1. Comparative table contrasting Traditional Methods, Classical Machine Learning (ML) 

Methods, and Advanced/Alternative Methods 

Aspect Traditional Methods 

(Empirical Formulas / 

Thermodynamic Models) 

Classical ML Methods (e.g., 

Linear Regression, Decision 

Trees, Random Forests) 

Advanced/Other Methods (e.g., Deep 

Learning, Digital Twins, Hybrid 

Models) 

Modeling Approach Based on thermodynamic laws, 

empirical equations, or 
simulations (e.g., Rankine cycle 

analysis) 

Data-driven, using supervised 

learning algorithms for 
regression 

Complex data-driven architectures using 

deep neural networks or hybrid physics-
ML models 

Data Requirements Low; minimal input data 

required (e.g., temp, pressure) 

Moderate; requires structured 

datasets with cleaned and 
labeled features 

High; requires large-scale datasets, real-

time sensor data, often unstructured or 
multi-modal 

Interpretability High (based on physics) Moderate to High (especially for 
tree-based models like Decision 

Tree, RF) 

Low to Moderate (deep models are 
often "black-box") unless explainability 

tools (e.g., SHAP) are applied 

Accuracy Moderate; relies on ideal 

conditions and simplifications 

High; models can capture 

complex non-linearities and 
interactions 

High; capable of capturing deep, hidden 

relationships 

Flexibility & 

Scalability 
Low; hard-coded equations and 
domain-specific logic 

High; generalizable to similar 
plants with retraining 

High; suitable for large-scale 
deployment with real-time adaptation 

(e.g., edge AI, cloud-based systems) 

Computational 

Cost 

Low Moderate High (especially training deep models 

or running digital twins) 

Maintenance/Updat

es 

Static; needs manual updates 

with system changes 

Easy retraining with updated 

data 

Requires high-end infrastructure for re-

training and deployment 

Real-time 

Application 
Limited; not suited for dynamic 
updates 

Possible with optimized 
pipelines 

Highly suitable; supports continuous 
learning and sensor fusion 

Explainability Tools N/A (inherent understanding via 
physics) 

SHAP, LIME, PDP, etc. 
available 

SHAP + Advanced Explainable AI 
(XAI) techniques needed 

Engineering 

Integration 

Seamless; directly maps to 

control systems 

Requires API/interface 

development 

Requires end-to-end pipeline, including 

IoT, cloud/edge computing, and cyber-

physical integration 

Examples Mollier diagram, Rankine cycle 
formulas, ASME steam tables 

Random Forest, Decision Tree, 
SVR, XGBoost 

LSTM (for time-series), CNN 
(image/sensor fusion), Digital Twins, 

GAN-based simulation models 

Pros ● Easy to interpret 

● Based on domain  

● knowledge   
● Low computation 

● Captures non-

linearity  

● Model 
interpretability  

● Scalable to similar 

systems 

● Superior performance  

● Real-time integration  

● Multi-sensor, unstructured 
data handling 

Cons ● Limited adaptability  
● Ignores noise & real-

world variation  

● No self-learning 

● Performance depends 
on data quality  

● May require feature 

engineering 

● High computation cost  
● Complex architecture  

● Difficult to interpret 

 

4.5. Model validation 

To ensure the strength and dependability of 

the suggested machine learning framework, 

several validation methods were utilized. 

4.5.1. Cross-validation 

Figure 4 illustrates the outcomes of a five-fold 

cross-validation for each model. Cross-validation 

is a recognized statistical method that avoids 

overfitting by training and evaluating models on 

several data subsets. The uniformity of the R² 
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scores throughout the folds indicates that the 

leading models, especially Random Forest and 

Gradient Boosting, effectively generalize to new 

data. 

 

4.5.2 Analysing residuals 

As illustrated in Figure 7, the residuals from 

the top-performing models exhibit a normal 

distribution centered around zero, creating a bell-

shaped curve. This suggests that prediction errors 

are random and lack systematic bias. These 

residual diagnostics provide additional evidence 

for the models' validity. 

 

4.5.3. Adherence to thermodynamics principles 

The results of feature importance analysis 

(Figures 6 and 9) revealed that boiler pressure, 

boiler temperature, and condenser pressure are the 

key parameters, consistent with known 

thermodynamic principles. This alignment of 

data-driven insights with physical principles 

offers an extra level of validation beyond mere 

statistical performance metrics. 

 

4.5.4. Adjustment of hyperparameters 

The optimized Random Forest model (Figure 

14) demonstrated a slight yet steady enhancement 

in predictive accuracy compared to the untuned 

variant. This outcome shows that the framework is 

not excessively influenced by hyperparameter 

adjustments and retains stability under various 

configurations. 

Together, these validation procedures validate 

that the created ML-based Rankine cycle model is 

precise, strong, and aligns with physical 

expectations, guaranteeing its use for both 

synthetic and possible real-world data. 

 

5. Conclusion 

In this work, researchers have shown that 

modelling and optimising the Rankine cycle—a 

key step in thermal power generation—using 

standard machine learning techniques is feasible.  

Using a synthetic yet thermodynamically sound 

dataset, we investigated how data-driven methods 

might improve the accuracy and efficiency of 

conventional analytical models.  The outcomes 

highlight the potential of ML techniques for use in 

actual energy systems in addition to validating 

their prediction ability.  The following are the 

main findings from the work: 

• A comprehensive ML-based framework 

was developed to predict and optimize 

Rankine cycle efficiency using classical 

algorithms. 

• Synthetic datasets (n = 10,000) allowed 

for scalable experimentation under a 

variety of realistic operating conditions. 

• Decision Tree and Random Forest 

Regressors provided the highest 

prediction accuracy (R² > 0.99), 

validating the nonlinearity in 

thermodynamic relationships. 

• Boiler pressure, turbine inlet temperature, 

and condenser pressure emerged as the 

most influential features, consistent with 

classical thermodynamic insights. 

• Visualization tools such as feature 

importance plots, residual distributions, 

and partial dependence plots enhanced 

model interpretability. 

• SHAP analysis (optional) demonstrated 

strong explainability, helping bridge the 

gap between data science and engineering 

decisions. 

• Compared to deep learning, classical ML 

approaches offered lower training costs, 

higher transparency, and ease of 

deployment. 

• The proposed methodology lays the 

groundwork for real-time applications like 

predictive maintenance, anomaly 

detection, and digital twin integration. 

• This approach is extensible to other 

thermal systems, promoting energy 

efficiency and sustainability in industrial 

power systems. 

• The work underscores the growing 

importance of machine learning as a 

transformative tool in thermal system 

modelling and energy optimization. 

This study's novelty comes from combining 

traditional machine learning with synthetic 

thermodynamic datasets, resulting in improved 

accuracy and interpretability in modeling the 

Rankine cycle. This paradigm demonstrates that 

straightforward, interpretable models may 

effectively capture nonlinear thermodynamic 

interactions, in contrast to previous research that 

mostly relies on first-principles simulations or 

opaque deep learning techniques. Combining 

predictive precision with explanation tools like 

SHAP and partial dependence analysis, this study 

connects data-driven modeling with engineering 

understanding, providing a practical and 

computationally efficient option for optimizing 

energy systems. 

Besides these contributions, this research 

presents multiple pathways for upcoming 
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investigations. The suggested framework can be 

augmented through training on actual plant 

datasets to enhance its relevance in industrial 

settings. Combining hybrid physics-ML methods 

with uncertainty quantification would enhance 

robustness and reliability. Additionally, 

broadening the approach to multi-objective 

optimization may assist in decision-making 

regarding trade-offs among efficiency, cost, and 

sustainability. These guidelines emphasize the 

wider possibilities of machine learning in 

promoting effective, data-informed solutions for 

future energy systems. 
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Appendix A: Overview of the Computational 

Framework 

 

Import Libraries 

• Data handling: numpy, pandas 

• Visualization: matplotlib, seaborn 

• Machine Learning: scikit-learn (linear 

regression, decision trees, random forest, 

gradient boosting, SVR, etc.) 

• Model interpretation: SHAP (optional) 

Data Generation and Preprocessing 

• Create synthetic dataset for Rankine cycle 

parameters (boiler pressure, condenser 

pressure, turbine efficiency, etc.). 

• Define target variable as cycle efficiency 

using thermodynamic relations + random 

noise. 

• Train-test split (80–20). 

• Standardize features for models sensitive 

to scaling (SVR, KNN). 

Model Training and Evaluation 

• Implement classical ML models: 

o Linear Regression, Ridge, Lasso 

o Decision Tree Regressor 

o Random Forest, Gradient 

Boosting 

o Support Vector Regression (SVR) 

o K-Nearest Neighbors (KNN) 

• Evaluate using MSE, MAE, and R². 

• Store results in a comparison table. 

Visualization of Results 

• Bar plots for model comparison (MSE, 

MAE, R²). 

• Scatter plots for actual vs predicted 

efficiency. 

• Residual plots to check error distribution. 

• Feature importance (Decision Tree, 

Random Forest). 

• Partial Dependence Plots (PDPs). 

• 3D surface plot of efficiency vs. boiler 

pressure & temperature. 

• Correlation heatmap. 

Cross-Validation and Hyperparameter Tuning 

• Perform 5-fold cross-validation for all 

models. 

• GridSearchCV for Random Forest 

hyperparameters. 

• Compare tuned vs. default model 

performance. 

Model Explainability 

• Apply SHAP for feature importance and 

dependence plots (if available). 

Result Documentation 

• Summarize best-performing models. 

• Highlight importance of turbine 

efficiency, boiler pressure, and condenser 

pressure. 
 

Output: 

Methods MSE R2_Score MAE 

Ridge Regression   0.000101 0.999154 0.008046 

Linear Regression  0.000101 0.999154 0.008042 

Gradient Boosting 0.000218 0.998168 0.011851 

Random Forest 0.000362 0.996958 0.015257 

Lasso Regression 0.000424 0.996431 0.016711 

Decision Tree 0.000954 0.991972 0.024807 

Support Vector Regressor  0.002092 0.982393 0.034987 

K-Nearest Neighbors 0.007928 0.933288 0.072032 

 [
 D

ow
nl

oa
de

d 
fr

om
 a

is
es

jo
ur

na
l.c

om
 o

n 
20

25
-1

1-
04

 ]
 

                            16 / 17

http://aisesjournal.com/article-1-42-en.html


 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 a

is
es

jo
ur

na
l.c

om
 o

n 
20

25
-1

1-
04

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            17 / 17

http://aisesjournal.com/article-1-42-en.html
http://www.tcpdf.org

