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Evaluating the energy efficiency of energy-efficient constructions relies heavily on
accurately anticipating their thermal loads. Current results have demonstrated that
stochastic algorithms effectively tackle the abovementioned problem. In light of these
issues, this research aims to evaluate a novel hybrid technique for estimating
dwellings' cooling load (CL). The multilayer perceptron and the Whale Optimization
Algorithm (WOA-MLP) are both suggested components of the model. The nonlinear
analysis of the impact of eight freestanding parameters on the cooling load was
performed through the best structure of every model. The assessment for this
investigation was carried out in two stages. During the first stage, the population size
that yielded the highest coefficient of determination (R?) value and the lowest root
mean square error (RMSE) amount was selected as the optimal one. During the
second stage, the experiment’ findings with a swarm size of 500 (R? =0.95155 and
0.95021, RMSE =0.07973 and 0.07737 for training and validation, correspondingly)
were put through a series of tests using several various p values (between 0.5-1.4).
According to the findings, the p-value of 1.3 is the one that provides the most reliable
results. This amount has an R? equal to 0.95212 and 0.94792 and an RMSE equal to
0.07926 and 0.07909.

1. Introduction

Construction, transportation, and industrial

various difficulties like acid rain, dependence on

production are the three most significant energy
consumers worldwide [1-3]. Buildings are
expected to account for over a third of total
consumption by 2040 [4]. Energy-efficient
constructions have been proposed to meet the
growing preference for smart cities[5, 6]. This
goal may be significantly advanced by accurately
assessing a building's energy performance (EPB).
Cooling load (CL) and heating load (HL) and
requirements contribute to energy-efficient
buildings' overall energy consumption. These
loads are managed by a heating, ventilation, and
air conditioning (HVAC) system [7] so as to
ensure that the building's occupants are
comfortable in the interior environment. People's
daily lives are significantly impacted by both
price. and energy consumption. As a
result, coupled with environmental problems,
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diminishing fossil fuel sources, emissions of
greenhouse gas [8-16], and change of climate [17-
20] develop due to the amount of energy used in
conjunction with the availability of energy [2, 21,
22]. In recent years, many strategies have been
utilized to design the HVAC system most
efficiently [23-31]. For example, Ghahramani et al.
[32] employed a systematic approach to
improving  skyscrapers' HVAC  operation
concerning the operating temperature point. In
addition to that, Ferreira et al. [33] controlled the
HVAC system by using an approach that
employed soft computing. When the suggested
approach was implemented, it reduced energy use
by around fifty percent.

In this manner, some of the limitations of
conventional current modeling methodologies (for
example, simulation packages of modeling), like
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inadequacies and enormous dimensions for
crowded places [34], have prompted engineers to
utilize Al (artificial intelligence) technologies for
quick prediction of energy [35, 36]. The term
"artificial intelligence” refers to the problem-
solving abilities shown by computers and other
electronic devices, in contrast to the "natural
intelligence" displayed by living things such as
people and animals [37-41]. As probably one of
the best Al-based alternatives, artificial neural
networks, or ANNs, have lately garnered
increasing interest [42-45]. In principle, the
theories established upon deep learning [46-48],
machine learning [49, 50], decision-making, the
alternatives which are based on feature selection
[51, 52], extremer machine learning [53-55], and
hybrid algorithms increasing conventional
multilayer perceptron. These methods are
effective in a variety of contexts, including the
design of buildings [56-63], the analysis and
categorization of images [63-69], durability, and
environmental issues [70-72]. In addition, various
research has been done to forecast the HL and CL
in green buildings [73-75]. To precisely estimate
the thermal load in a scholarly building, Zhou et
al. [31] utilized an ANN in conjunction with the
nonlinear autoregressive with exogenous inputs
(NARX) paradigm. Comparative research was
carried out by Koschwitz et al. [76], who used
NARX recurrent neural networks (NARX RNNSs)
to approximate longstanding metropolitan heating
loads. Neural networks performed far superior to
other traditional approaches like gradient-boosted
machines, according to research published by Roy
et al. [77], which indicated that neural networks
accounted for 99.76 percent of the variation in the
data.

Various forecasters, like adaptive neuro-fuzzy
inference systems (ANFISs), have demonstrated
excellent resilience when handling nonlinear
issues [78]. Pezeshki and Mazinani [79] deduced
that ANFISs are more remarkable than traditional
fuzzy logic regarding the thermal performance of
green buildings. This is because ANFISs also
delight in all of the benefits that ANNs do. The
practical application of support vector-based
approaches and ANFIS has been illustrated by
researchers named Naji et al. [80] and Chou and
Bui [81]. In more new findings, researchers have
proposed combining traditionally used predictors
with metaheuristic search strategies for various
applications [82]. Even more dramatically, using
these methods has significantly enhanced the
reputation of energy consumption modeling.
Satrio et al. demonstrated the effectiveness of
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integrating ANNs and multiobjective genetic
algorithms in  improving HVAC systems,
providing an efficient solution [83]. To forecast
the amount of energy used by buildings, Moayedi
et al. [4] combined an artificial neural network
with an electromagnetism-based firefly algorithm.
The research findings show the superiority of the
proposed new model over traditional models.
TienBui et al. [30] found that implementing the
imperialist competition and genetic algorithms
could decrease the ANN’s HL forecast error from
2.93 to 2.06 and 2.00 in that order. This error
decreased from 3.28 to 2.09 and then 2.10 for the
CL measurement. In addition, research conducted
by Nguyen et al. [84] and Moayedi et al. [85]
utilized innovative metaheuristic strategies to
improve the ANN's power to make accurate
predictions. Despite the widespread application of
nature-inspired metaheuristic tools to improve the
HVAC system, the writers were motivated to
examine the potential application of an innovative
representative  of this group, specifically
stochastic fractal search, in this article due to the
extensive  diversity of these approaches.
According to our knowledge, the aforementioned
algorithm has never been utilized in this particular
domain before.

This paper introduces a two-phase multiobjective
optimization algorithm, the WOA, which extends
a recent nature-inspired optimization algorithm to
handle multiple objectives [86]. Previous research
has attempted to solve multiobjective
issues utilizing the WOA algorithm, including the
non-dominated  sorting based on the
multiobjective Whale Optimization Algorithm
(NSMOWOA) [87], which uses a new non-
dominated sorting approach to evaluate the non-
dominated solutions. Another approach proposed
an external archive to store the nondominated
solutions and employed aroulette wheel
approach to modify the solutions’ distribution in
the archive [88]. Another method, Multiobjective
WOA (MOWOA), incorporated archive grid
selection in the original WOA [89]. In contrast,
the proposed GPAWOA algorithm utilizes a
simple and effective strategy to upgrade the
external archive, which is crucial for the
algorithm's convergence. It incorporates the
crowding distance computation’s mechanism at
different algorithm steps to ensure well-
distributed solutions in the archive. The WOA
algorithm is easy to implement because of its
simple mechanism, and the suggested WOA
algorithm effectively balances exploitation and
exploration of the search space and has high
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convergence and success as a single-objective
optimizer. This article is organized as: Section 2
describes the created database. The WOA and
ANN are also briefly reviewed in Section 3.
Section 4 represents experimental findings,
comparisons, and test and performance measures.
The article is finally concluded in Section 5,
which covers future research.

2. Established database:

It is common knowledge that the correct
construction of intelligent models requires the
application of data that can be relied upon. In the
context of this investigation, the data from a green
building is taken into consideration. The dataset is
generated  through  computer  simulations
conducted in the Ecotect environment [90]. Tsanas
and Xifara [91] were the ones who came up with
the idea, and you can find it at the mentioned
URL:

http://archive.ics.uci.edu/ml/datasets/Energy-+effic
iency.

Through the examination of 12 distinct structures
(a volume of 771.75 m3), the CL and HL [92] of
768 cases were gathered once relative

2

compactness (RC =6T‘f3, which denotes the ratio

between the surface area (A) and the equivalent
volume (V) [93]), overall height (OH), surface
area (SA), wall area (WA), glazing area (GA),
roof area (RA) [92, 94], orientation, which stands
for the total area calculated by the rough opening,
containing sash, glass, and frame [95], and the
glazing area distribution (GAD), which stands for
how the GA is spread out in the whole building
[92], are considered essential parameters (that is,
freestanding parameters). Figures 1 and 2 indicate
the data preparation’s graphical and schematic
view.
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Figure 2. Preparation of data in a schematic view
versus cooling load
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Figure 3 shows the variable range for all eight
input variables. Regarding this figure, overall
height has the highest range, and wall area has the
lowest range. Figures 4 and 5 demonstrate the
variation of input parameters versus each other.
The target amounts (cooling load) are divided into
class I, 11, and Il grips. Class | is related to 12.38-
23.3, class Il ranges between 23.3-35.66, and the
third-class ranges between 35.67- 48.04. Figure 5
demonstrates the variation of each of the two
parameters versus each other.
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Figure 5: Variation of input parameters

Figure 6 presents the Andrews plot for our dataset.
Andrews’s plots, also known as Andrew’s curves,
were first introduced by George Andrews in 1972.
They are a less well-known visualization
technique but valuable in specific scenarios, such
as when comparing multiple data sets with many
variables. The basic idea behind Andrew's plot is
to convert data points into curves. This is done by
computing the Fourier series of the data, which
decomposes it into a series of sine and cosine
functions. The Fourier coefficients are then used
to calculate and plot curve shapes. The resulting
plot consists of multiple curves (one for each data
point) overlaid on the same graph (Figure 6). Each
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curve is represented in a different color, and labels
can be added to clearly distinguish them from one
another.

Figure 6: The description of Andrews plot forthe
input and output layers

3. Methodology
3.1. Multilayer perceptron

In 1943, Pitts and McCulloch originally proposed
an ANN’s concept [96]. Scholars have
recommended a diversity of ANNs for various
applications because of their ability to map
variables nonlinearly [97, 98]. There are several
advantages to using the Multilayer Perceptron
(MLP) tool over other ANN Kkinds, including its
adaptability in terms of structure and its capacity
to express a wide variety of data items.
Backpropagation is the training method used for
MLPs, also known as feedforward neural
implements and generic approximators [99].
Neurons, a computing entity, can anticipate almost
any input-output arrangement. This work shows
MLPs in Fig. 7 as a schematic representation of
their overall structure. As one can see, it
comprises three unique levels: input and output
layers and a hidden layer. A significant connection
exists between the neurons in this layer(s) and
those in the one above it [100, 101].

4\_|I,',

f i'\|l. } y Cosling Losa |

(%)
T 4 (|h. )

Figure 7: The general structure of the MLP
3.2.Whale Optimization Algorithm (WOA):

In this part of the article, we will first go through
the sources that inspired the technique offered.
Afterward, the mathematical model is supplied.
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3.2.1. Inspiration

Whales are perhaps of nature's most beautiful
animals. There is no doubt that they are the most
enormous land creatures on Earth. Mature whales
may weigh up to 180 tons and 30 meters in length.
Killer, minke, Sei, humpback, finback, right, and
blue whales are among the seven major kinds of
this enormous animal. They are often believed to
be predatory. They cannot rest since they must get
their air from the ocean's surface. In reality, just
half of the brain rests throughout the night. What's
fascinating about whales is that they're thought of
as emotionally complex, highly cognitive
creatures.

It has been suggested by Van Der Gucht and Hof
[102] that whales have a kind of brain cell
designated as spindle cells identical to humans.
Neurons in the brain's limbic system are essential
for human judgment, emotional responses, and
social interaction. We are unique from other
animals because of the spindle cells. Because
whales have double the amount of these cells as
an adult person, they are brilliant. Whales are
capable of learning, thinking, communicating,
judging, and being emotional, although clearly at
a lesser level of intelligence than humans. Whales
(especially killer whales) have been reported to be
capable of developing their dialects. It is also
fascinating to see how whales interact with each
other socially. They may either be found living
alone or in small groups. The majority of the time,
however, they are found in packs. Some animals
(such as killer whales) may remain together as a
colony for the whole of their lives. Huge
humpbacks (Megaptera novaeangliae) are a large
species of baleen whale. Adult humpback whales
are around a school bus’s size when fully grown.
Krill and groups of juvenile fish are their
preferred food source. In Fig. 8, you can see this
creature in action.
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Figure 8: Bubble-net feeding humpback whales’
behavior.
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The unique hunting style of humpback whales' is
perhaps the most fascinating aspect of these
animals. The form of feeding known as bubble-net
feeding refers to this kind of foraging activity
[103]. Humpback whales must stay near the
surface to catch tiny fish or krill. Figure 8 shows
this foraging by forming different bubbles across
a circular or '9'-shaped route. Before 2011, this
phenomenon was solely researched on the basis
observations made from the surface.

On the other hand, Goldbogen et al. [104] utilized
tag sensors to study this behavior. They recorded
300 bubble-net feeding occurrences of nine
unique humpback whales, all tracked by tags.
'‘Upward spirals' and 'double-loops' were the two
techniques they discovered connected with
bubbles. In the first technique, they descend to
around 12 meters below the surface, constructing
a spiraling bubble around their prey before
swimming back up to the top. The latter move
includes three distinct steps: the catch loop, the
lobtail, and the coral loop. This behavior's
specifics may be discovered in [104]. It is
essential to note that humpback whales are the
only marine mammals known to engage in the
unusual eating method known as bubble-net
feeding. Within the scope of this study, a
theoretical formalism of the spiral bubble-net
feeding method is constructed to facilitate
optimization.

3.2.2.
Mathematical Model

Optimization Algorithm and

The first thing presented in this chapter is
encircling prey’s mathematical model, followed
by a spiral bubble-net feeding strategy and a hunt
for food. The WOA algorithm is then put out as a
solution to this issue.

3.2.3. Encircling prey

The humpback whale can locate and encircle prey
that it recognizes. Because the precise location of
the finest potential solution in the search zone
cannot be determined in advance, the WOA
approach assumes that the best available
candidate solution is either the target prey or is
very near to the ideal solution. As soon as the
leading search agent has been identified, the other
search agents will work to improve their standings
concerning the top search agent. The following
equations provide a representation of this pattern
of behavior:
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D=|C+X*(t) - X(®)| (1)

Xt+1D)=Xt)-A-D (2)

In this equation, t stands for the current repetition,

C and Aare vectors of coefficient, and X* is a
vector of position representing the most excellent
solution found thus far. In addition, X is a
situation vector representing the worst solution
found thus far. The notation | | denotes the
absolute value, whereas the symbol - denotes the
element-by-element multiplication. It is essential
to point out that if there is a better answer,
X*should be modified after each repetition of the
problem-solving process.

The vectorsC and Aare determined utilizing the
following formulas:

A=2d-7—a 3)

C=2-7 (4)

Where dis an accidental vector and is changed
linearly from 0 to 2 throughout iterations (in both
the exploration and exploitation stages), and
where 7 is a vector in the [0, 1] range.

To further understand the underlying reasoning of
Eq. (2), consider the 2D situation shown in Fig. 9.
It is possible to adjust a search agent's position (X,
Y) such that it corresponds with the location of
the record that is now considered to be the best
(X*Y".

By modifying the value of Cand Avectors, it is
possible to move to various locations about the
present position and remain near the best agent. In
addition, the potential updated location of a search
agent in three-dimensional space is represented in
Fig. 9 (b). As illustrated in Figure 9, it is feasible
to go anywhere in the search space between the
critical locations by specifying an appropriate
random vector (7). Equation (2.2) enables any
search agent to imitate encircling the prey by
constantly updating its location near the most
outstanding solution.

o 5

Figure 9: 3D and 2D position vectors and their
feasible following locations
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The identical notion may be generalized to a
space of search with n dimensions; in which case
the search agents will travel in hyper-cubes of the
most excellent solution achieved up to this point.
As was covered in the prior part of this article,
humpback whales are also known to hunt their
prey using the bubble-net method. Quantitatively,
the following is how this approach is put together:

3.2.3.1. Bubble-net

(exploitation phase)

attacking method

To simulate the humpback whales’ bubble-net
treatment, two following methods are designed:
Two methods, which are described in the
following sequence, have been devised to mimic
the humpback whales’ bubble-net behavior
quantitatively:

1. Shrinking encircling mechanism: a in the
equation may be made to behave in this manner
by lowering the value it has in Eqg. (2.3). It is

worth noting that A's fluctuation range has shrunk

byd. To put it another way, Ais a number that is
chosen at random from the range [—a,a], where a
is dropped from 2 to 0 as the iteration process

continues. By assigning random values to Ain the
range of [—1, 1], the new location of a search
agent may be determined anywhere in the range
between the agent's starting position and the
situation of the most excellent agent currently
available. The feasible locations from (X,Y)
approaching (X*,Y™) that can be obtained by 0 <A
<1 in a two-dimensional space are shown in Fig.
10a.

2. Spiral updating position:This method begins
by computing the distance between the whale,
which is positioned at the coordinates (X,Y), and
the prey, which is placed at the coordinates
(X*,Y*), as shown in Fig. 10 (b). After that, a
spiral equation is built between the location of the
prey and the whale to model the helix-shaped
motion that humpback whales make, and it looks
like this:

X~(t+ 1) = e”bl - cos(2mk) - ©)
(DN)7+ (X" %) 7(0)
where D’ = |[X*(t) — X(¢t)| is the distance
between the prey and the ith whale (the most
excellent solution found thus far), b is a constant
that represents the logarithmic spiral’s shape, | is
an accidental integer in the range of [-1,1].
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1

Figure 10: The WOA algorithm’s Bubble-net’s
search mechanism: (a) the mechanism of shrinking
encircling and (b) the position of spiral updating.

It is essential to know that humpback whales
method their prey in a contracting circle while
concurrently following a spiraling course. For the
sake of modeling this concurrent behavior, we
postulate that there is a chance of fifty percent to
select either the shrinking encircling mechanism
or the spiral method to adjust the location of
whales while optimization is in progress. The
following is a description of the mathematical
model:

X@t+1)
_ { X*(t) - A- Difp <05 (6)
el - cos(2mk) - D' + X*(t)ifp = 0.5

In which p is an accidental integer that falls
between 0 and 1.

The humpback whales will randomly seek food
and use the bubble-net approach. The following
subsection is a mathematical method of how the
search is being carried out.

3.2.3.2. Search for prey (exploration stage)

Searching for prey may also make use of Avector
variant and the corresponding  strategy
(examination). Admittedly, humpback whales look
about haphazardly, taking into account where each

other is located. As a result, we utilize A with
random values that are either more than one or
less than -1 to coerce the search agent to go a
significant space away from a reference whale. In
the exploration stage, we do not use the most
outstanding search agent we have discovered thus
far to change the situation of a search agent.
Instead, we choose a search agent at random. This
technique, together with |/f| > 1, emphasizes
exploration and makes it possible for the WOA
method to conduct a worldwide search. Following
are some of the details of the mathematical model:

D =|C Xrana — X(0)| (7)
Xt+1)=X,gg—A-D (8)
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In which X,.,,,4 is a vector of position arbitrarily
drawn from the existing population (a random
whale).

Figure 11 illustrates a few of the different places
that might exist in the vicinity of a specific

solution that has an Avalue greater than 1.

Figure 11: WOA algorithm’s Exploration
mechanism.

The algorithm of WOA begins with a collection of
feasible solutions. Each time a new iteration is run,
the search agents compare their results to a
previously picked search agent or the best solution
found up until now. The variable's value is
brought down from 2 to 0 to accomplish
exploitation and exploration. To adjust the
location of the search agents, a stochastic search
agent will be picked if |A | is more than 1, and the
optimal solution will be chosen whenever |A | is
less than 1. WOA can switch between circular and
spiral movement-based p-values. In conclusion,
the WOA algorithm is stopped when a termination
requirement is successfully met.

Figure 12 shows the WOA algorithm's pseudo
code. According to WOA's conceptual framework,
it is possible to contemplate it as a planetary
optimizer. In addition to this, the hyper-cube
technique that has been described creates a search
space close to the optimal solution, which then
makes it possible for other search agents to make
utilization of the most remarkable record that is
now held within that region. It is possible to
seamlessly transition between exploitation and
exploration by varying the search vector A. By
reducing A; some iterations are allocated to
exploration (| A | >1), while the remainder is
committed to exploitation (| A | < 1). It is
remarkable because WOA only has two key
internal settings that may be manipulated (A and
C).
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Figure 12: WOA algorithm’s pseudo-code.

We built an elementary form of the WOA
algorithm to limit the number of heuristics and
input variables. While mutation and other
evolutionary processes could have been contained
within the WOA framework to imitate the
behavior of humpback whales, ultimately, we
chose not to provide them because we intended to
replicate the humpback whales’ behavior
completely. It is possible, nevertheless, that
continued studies may examine hybridization
using evolutionary search algorithms.

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 37-60

4. Results and Discussion

To replicate the CL of a housing complex, two
metaheuristic algorithms, notably WOA, are used
to improve the MLP neural network. The MLP
and WOA-MLP techniques are conceived and
written using MATLAB software. To train the
suggested networks, 768 samples were employed,
each with one of the eight previously specified
individual variables affecting CL in the buildings.
This data is split 80/20 between training the
networks and evaluating the generalizability of
the WOA-MLP and MLP approaches using the
other 154 records.

The Weka instrument, a piece of open-source
software with constellations of several different
machine-learning methods, was used to conduct
the comparison simulations. Standard deviation
criteria, namely, R* and RMSE, were utilized to
evaluate the created model performance. Tables 1
to 3 and Figs. 13 to 18 provide the results of the
suggested algorithm's performance regarding the
cooling load.

Table 1. Network result variations on the basis of the neurons’ number in each hidden layer

neurons

number in Network results Scoring
each Total score RANK
hidden
layer RMSEwu ~ RMSEywn ~ RMSEey  MSEgu  RMSEwn  RMSE
1 0.455 0.445 0.452 6 5 5 16 6
2 0.364 0.355 0.361 9 9 9 27 2
3 0.246 0.231 0.242 10 10 10 30 1
4 1.073 1.058 1.069 1 1 1 3 10
5 0.458 0.427 0.449 5 7 6 18 5
6 0.476 0.498 0.483 4 4 4 12 7
7 0.402 0.403 0.402 8 8 8 24 3
8 1.000 0.971 0.991 2 2 2 6 9
9 0.430 0.430 0.430 7 6 7 20 4
10 0.797 0.811 0.801 3 3 3 9 8

4.1. Accuracy Indicators

Specifically, as shown in Egs. (9) and (10), two
RMSE and R? precision criteria are developed to
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compare these two methods. Interestingly, several
researchers have employed these indexes in their
investigations [105, 106]. Following this, a
lengthy experimentation process is implemented
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to arrive at the most effective configuration for the
models. The application of every single model
follows this to provide accurate predictions of HL
and CL.

13 ’
RMSE = U z [(Siobserved - Sipredicled )] (9)
i=1
U
Z (S ipredicted - i observed )2
R?=1-2 — (10)
Z (S i observed B S observed )2

Il
N

Si observed and anticipated designating the well-
organized building's genuine and expected CL
values in that order. The occurrences’ number is
denoted by the letter U, while the mean of the
authentic values of CL is denoted by the
letter.s,pserved-

4.2. Network Optimization

Soft computing approaches have various variables
that might affect their performance. The number
of processing units is the one that has the most
impact among these many factors. With the help
of an experimentation approach, the most suitable
MLP and WOA-MLP network structures are
found hereunder. As a result, several structures
were created and put through rigorous RMSE
testing. To construct the MLP, a backpropagation-
based network with ten distinct neuron densities
and one hidden layer was created. Surprisingly,
the Levenberg-Marquardt (LM) training method
maps the connection between the freestanding and
responsible variables. This strategy was chosen
because it performs better than traditional gradient
descent methods. According to the findings of the
sensitivity study, the MLP network with four
hidden layer nodes provides the most precise
estimation of the CL output. As a result, the
computed RMSE for CL forecasting is 3.85. In the
end, the structure of the top-tier MLP may be
described using the notation 8x4x2, which
signifies that there are correspondingly 2, 4, and 8
computational neurons in the output, hidden, and
input layers. These ensembles are created by using
a WOA-MLP algorithm on this network.

In terms of the WOA-MLP model, an iterative
experimentation procedure is utilized to calculate
the optimal values for the WOA algorithm's
variables. Optimization methods have several
factors that need to be tinkered with to maximize
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their effectiveness. When using a population-
based method like WOA, the population size is
the foremost aspect to consider. In addition to this,
the learning process is significantly influenced by
the epochs’ total number, also known as repetition.
Put another way, the model's population size has
been optimized in the first place. To accomplish
this goal, ten distinct swarm sizes and within one
thousand repetitions are put to the test. According
to the findings in Fig. 13, the WOAMLP
algorithm achieves its maximum accuracy when
applied to networks with a swarm size of 500.

Figure 13: Best fit proposed structures with various
WOA population sizes between 50-500

According to what can be observed, the WOA-
MLP ensemble has the most excellent converging
curves (the minimum RMSE by the time the
process is complete) when using the population
size of 500. Figure 14 displays the MSE
calculated with the p-value appropriate for a
population size of 500 (0.5, 0.6, 0.7, 0.8, 0.9, 0.1,
1.1, 1.2, 1.3, and 1.3). The minimum MSE
indicates the precise outcome and provides the
most outstanding value. This graphic shows that
the MSE is at its lowest for the value of p equal to
1.3, indicating that this particular value yields the
best precise outcomes when forecasting CL.
Figure 14 shows that the greatest MSE, p=1.3,
caused the most inaccurate results.

Figure 14: Best fit suggested 500 architectures with
different WOA p-values between 0.5 to 1.4
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This section assesses the validity of the built
methods by comparing the anticipated and
observed values of cooling load (CL). RMSE and
R? were determined as the error criterion to
guantify the efficiency error level for each of the
testing and training samples. Other WOA values
(p=0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 1.1, 1.2, 1.3, and
1.4) were deliberately tweaked consistent with
earlier findings or by trial-and-error. After that,
estimates of the CL are derived using these
models. Figures 15 and 16 show a graphic
representation of the errors for the testing and
training stages and the relationship between the
existing CLs and the ones anticipated in every
model. The extraction of R? and RMSSE values
from Figs. 15 and 16 yield Table 2, the sum of all
regressions, and the optimum population size is
displayed on the word of its ordering. Table 2 also
presents that a swarm size of 500 had the most
incredible precision, with R? amount of 0.95021
and 0.95155 for the testing and training phases.
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Figure 15: The precise of the WOAMLP training
dataset in the first optimization phase, after
changing the population size between 50 and 500
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Figure 16: The precise of the WOAMLP testing
dataset in the first optimization phase, after
changing the population size between 50 and 500

The most excellent precision is found for a
population size of 500 when R? values (namely,
the least RMSE after the procedure) are
considered. R? is shown graphically in Figures 15
and 16 for a population of 500 throughout the
testing and training phases, with p values equal to
0.5,06,0.7,08,0.9,0.1,1.1,1.2,1.3,and 1.3. It
was previously indicated that Table 3 can be
derived from the R? and RMSE values related to
Figs. 17 and 18; this is a compilation of all
regressions, and the most outstanding possible
result is displayed based on its ordering. The p-
value equal to 1.3 produces the most excellent R
value, as seen in Figs. 17 and 18, as well as Table
3 (0.95212 and 0.94792 for training and testing,
respectively).

Table 2. The results of the network for the WOAMLP with different population sizes

Swam Training dataset Testing dataset Scoring

. Total Score Rank

size
RMSE R? RMSE R? Training Testing

50 0.08815  0.94043 0.08678 0.93693 3 3 2 2 10 8
100 0.0913 0.93595 0.08699 0.93661 2 2 1 1 6 10
150 0.08311 0.94723 0.0835 0.94176 6 6 4 4 20 5
200 0.0917 0.93537 0.08395 0.94111 1 1 3 3 8 9
250 0.07991  0.95132 0.07903 0.948 8 8 8 8 32 3
300 0.08516 0.94451 0.08076 0.94562 4 4 6 6 20 5
350 0.08194 0.94875 0.07886 0.94823 7 7 9 9 32 3
400 0.07914 0.95228 0.07944 0.94743 10 10 7 7 34 2
450 0.08459 0.94528 0.08232 0.94343 5 5 5 5 20 5
500 0.07973 0.95155 0.07737 0.95021 9 9 10 10 38 1
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Figure 18: Testing accuracy for the proposed
structure having different WOA p parameters
varied from0.5t0 1.4

Table 3. The network results for the WOAMLP have different p-values

Swam Training dataset Testing dataset Scoring

] Total Score Rank

size
RMSE R? RMSE R? Training Testing

0.5 0.08403  0.94602 0.07993 0.94676 5 5 8 8 26 4
0.6 0.08287  0.94754 0.07859 0.94858 8 8 10 10 36 2
0.7 0.08558  0.94395 0.08184 0.94412 2 2 3 3 10 8
0.8 0.0838 0.94633 0.08073 0.94567 6 6 6 6 24 5
0.9 0.08275 0.9477 0.08046 0.94604 9 9 7 7 32 3

1 0.08443  0.94549 0.08131 0.94486 4 4 4 4 16 7
1.1 0.08601  0.94338 0.08214 0.9437 1 1 2 2 6 10
1.2 0.08325 0.94705 0.08077 0.9456 7 7 5 5 24 5
1.3 0.07926 0.95212 0.07909 0.94792 10 10 9 9 38 1
1.4 0.08529  0.94435 0.08221 0.94359 3 3 1 1 8 9

5. Discussion

The versatility of the hybrid load forecasting
approach is shown in this research. For the most
part, the building model is utilized to gather data
on cooling loads. It is essential to rebuild the
building method and update the building database
whenever it is altered. Since this article
concentrates on the influence of external
disturbances on the load predicting method, the
proposed hybrid method has postulated that the
structures’ internal disturbances are stationary.

53

When the building method is being created, one
may thus circumvent the problem of the
constantly shifting internal disturbances and save
themselves from potential harm. In residential
structures, the cooling load might be affected by
internal disturbances; hence, the suggested hybrid
load forecasting approach is appropriate. It is
possible to do dynamic load forecasting for
HVAC systems by leveraging an available
database to construct an extrapolation model for
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residential buildings. You must include the input
of internal disturbance variables into the
suggested hybrid load forecasting approach, as
well as create two models of the working day load
predicting and the holiday load predicting if you
would like to utilize it for public structures like
marketable buildings whose loads are heavily
impacted by internal disturbances. Therefore, it
applies to most types of municipal buildings.
In several engineering measures, intelligent
models are primarily recognized to be superior to
conventional and experimental procedures. In
addition to their high degree of certainty, these
models' simplicity of execution is a crucial factor
in their widespread adoption. Concerning energy
efficiency studies, there may be specific
difficulties connected with employing
methodologies of forward modeling and widely
used software for simulation (various precision of
simulation). Indirect evaluation models like those
presented in this study are desirable to avoid
expensive and damaging methods. Metaheuristic
tools emphasize this even more when used to
construct an ideal methodology. In other words,
optimizing algorithms results in competent
ensembles that function in perfect circumstances.
a) If you plan to build a new building, the
proposed model may help you determine
how much thermal load you will need
based on the size and other aspects of the
structure. When designing and installing
HVAC systems, this approach will be

helpful for engineers and building owners.

b) One option for initial support in
rebuilding projects would be to help with
optimal architectural design and tune the

layout via input parameters. When
analyzing the thermal load behavior,
looking at each input parameter

individually is also feasible. The WOA-
MLP, on the other hand, accurately
predicts it. It is also possible to use this
technique for real-world buildings.

c) This approach, known as the two-phase
method, does the analysis in the first
phase, just as the prior study did, and then
chooses the population size that would
provide the best results. The RMSE and
R? values for this population size are the
lowest and highest, respectively, and their
forecasting seems to be the most precise.
As a result of that particular section's
inclusion, this piece stands apart from the
others. Examining the optimal swarm size
from the previous step is the focus of the
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second phase. In this manner, multiple
distinct values have been explored for the
p parameter (which was covered in part
before this one), and the one that has been
retrieved has the lowest RMS and the
highest R? value. It is also important to
note that the recommended method was
provided as an explicit mathematical
formula, which, compared to the GUI

form in MATLAB, is more
straightforward to utilize and more user-
friendly.

Nevertheless,  many  investigations  have
successfully used machine learning technologies
to correctly forecast the thermal loads of buildings
utilized for aims other than residential, including
commercial and industrial [107]. There is a
connection between the majority of these concepts
and the information. There are a few things to
remember when comparing these findings to those
obtained with normalized data. These simulations
must be analyzed to determine which data sets are
most suited. Another advantage of optimizing the
number of inputs is that it reduces the complexity
of the procedure, reducing the number of
variables that must be optimized. When the HL
and CL are combined, the issue becomes a two-
target simulation, and the advantage should be
weighed against the greater sophistication.
Another possible topic is using many architectural
styles within the same research project. Using this
method, the model may be utilized for a wide
range of different architectural applications. In
conclusion, it is strongly suggested that future
research compare efforts to identify the most
effective algorithm when coupled with ANN or
other intelligent tools.

6. Conclusions

Over the last several years, novel approaches for
determining buildings' energy usage have been
developed. Metaheuristic algorithms were used in
this article to solve the imperfections of the
backpropagation techniques. The green building’s
CL was estimated by synthesizing a standard MLP
utilizing a WOA-MLP. To do this, eight key
energy factors, such as roof area, relative
compactness, surface area, orientation, glazing
area, overall height, wall area, and glazing area
distribution, were addressed as the networks’
inputs. Different building environment was used
to model and assess 768 structures, considering
twelve four-glazing regions, distinct buildings,
four orientations, and five distribution scenarios.
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Eighty percent (614 records) were used to train
the MLP and WOA-MLP models, while the
residual twenty percent (154 records) were used to
assess their effectiveness. The suggested models
were implemented under their ideal circumstances,
and two well-known statistical criteria, RMSE and
R?, were utilized to evaluate the correctness of
every single technique. We found that methods
based on artificial intelligence have the potential
to be an effective solution to the problem of
assessing the cooling loads of buildings. Both
pattern learning and prediction are improved
significantly when the WOA calibrates the ANN's
computational parameters (that is, its biases and
weights). According to the estimated RMSE and
R? (0.07973 and 0.07737) and (0.95155 and
0.95021) during training and testing, a sample size
of 500 people yielded the most precise findings.
The p value was changed from 0.5 to 1.3 for a
population size of 500, and the most remarkable
conclusion was drawn when p was set to 1.3. This
value produced an R? value of 0.95212 and
0.94792 and an RMSE value of 0.07926 and
0.07909 for the training and testing stages,
respectively.
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