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 This study aims to provide valuable insights into future emission trends by utilizing 

advanced predictive modeling techniques. With global energy consumption 

continuing to rise, understanding and forecasting carbon dioxide (CO2) emissions 

from energy sources is crucial for policymakers to design effective mitigation 

measures and transition towards sustainable energy systems. Predicting energy-

related CO2 emissions is vital for informing evidence-based environmental policies 

and strategies to combat climate change. This project investigates the prediction of 

energy-related carbon dioxide emissions in Western Europe by merging a neural 

network with three nature-inspired optimization algorithms: Multiverse Optimization 

(MVO), League Championship Algorithm (LCA), and Evaporation Rate Water Cycle 

Algorithm (ERWCA). We assess how much this combined approach improves 

prediction accuracy using a relevant dataset. Our findings demonstrate that the 

ensemble model works better than alternative methods and has increased accuracy in 

estimating carbon dioxide emissions, as evaluated by R-squared (R2) and Root Mean 

Square Error (RMSE). This research provides helpful information for developing 

sustainability initiatives and regulations by highlighting the advantages of utilizing 

various optimization techniques in predictive modeling for environmental 

applications. The accuracy of the MLP is improved by applying the MVO, LCA, and 

ERWCA algorithms. It was demonstrated that some hybrid techniques can yield more 

precise predictions than those derived from the conventional MLP ranking. 

Subsequent analysis revealed that ERWCA outperforms the other algorithms. Using 

R2 = 0.9977 and 0.9919, RMSE 17.9936 and 30.1394 for ERWCA, R2 = 0.9962 and 

0.9898, RMSE 23.3505 and 33.8724 for MVO, and R2 = 0.9898 and 0.9793, RMSE 

38.2511 and 48.1272 for LCA, the CO2 emission was estimated with the highest 

degree of accuracy. 
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1. Introduction 

For several reasons, predicting carbon dioxide 

(CO2) emissions is crucial in the context of 

climate change and environmental sustainability. 

CO2 is a significant greenhouse gas responsible 

for trapping heat in the Earth's atmosphere, 

leading to global warming and climate change [1]. 

By accurately predicting CO2 emissions, we can 

better understand and anticipate the impact of 

human activities on the climate system. This 

information is essential for implementing 

effective mitigation strategies to limit the rise in 

global temperatures and minimize the adverse 

effects of climate change. Predictive models of 

CO2 emissions provide valuable insights for 

policymakers and decision-makers in developing 

and implementing climate policies and regulations 

[2]. These models help identify sectors and 

activities that contribute most to CO2 emissions, 

enabling targeted interventions to reduce 

emissions and transition to low-carbon 

alternatives. Predicting CO2 emissions is integral 

to promoting sustainable development practices. 

By forecasting future emissions trends, 

policymakers, businesses, and communities can 

make informed decisions about investments, 

resource allocation, and infrastructure 
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development [3, 4]. This facilitates the transition 

towards a more sustainable and resilient economy 

that balances environmental protection with 

economic growth and social well-being. Accurate 

prediction of CO2 emissions allows for assessing 

the environmental impact of various human 

activities, such as energy production, 

transportation, and industrial processes [5, 6]. 

Understanding the relationship between CO2 

emissions and environmental degradation helps 

prioritize conservation efforts, protect ecosystems, 

and preserve biodiversity. CO2 emissions are a 

global challenge that requires collaborative action 

on an international scale. Predictive emissions 

modeling provides a common framework for 

countries to track progress toward emissions 

reduction targets, share best practices, and engage 

in climate negotiations [7]. By fostering global 

cooperation, predictive modeling contributes to 

collective efforts to address climate change and 

achieve sustainable development goals [8]. 

Predicting CO2 emissions plays a vital role in 

understanding, mitigating, and adapting to climate 

change, promoting environmental sustainability, 

and advancing global efforts towards a more 

resilient and equitable future. 

In recent years, integrating neural networks and 

optimization algorithms has revolutionized 

predictive modeling across various domains [9, 

10]. Neural networks, inspired by the structure 

and function of the human brain, have emerged as 

powerful tools for processing complex data and 

extracting meaningful patterns. Optimization 

algorithms, on the other hand, provide efficient 

methods for tuning the parameters of neural 

networks to enhance their predictive performance 

[11, 12]. Neural networks, often called artificial 

neural networks (ANNs), are computational 

models composed of interconnected nodes, or 

neurons, organized in layers [13]. Each neuron 

receives input signals, processes them through an 

activation function, and passes the output to 

subsequent layers. Through a process known as 

training, neural networks learn to adjust the 

weights and biases of connections between 

neurons to optimize their performance on a given 

task, such as classification or regression. The 

versatility of neural networks lies in their ability 

to learn complex, nonlinear relationships from 

data without requiring explicit programming [14]. 

This makes them well-suited for tasks involving 

pattern recognition, time-series prediction, image 

classification, and natural language processing. 

Moreover, advancements in deep learning, which 

involves training neural networks with multiple 

hidden layers, have led to breakthroughs in speech 

recognition, autonomous vehicles, and healthcare 

diagnostics [15]. Optimization algorithms are 

crucial in training neural networks by iteratively 

adjusting their parameters to minimize a 

predefined loss function [16]. These algorithms 

seek to find the optimal set of weights and biases 

that minimize the difference between the 

predicted outputs of the neural network and the 

actual targets in the training data. Various 

optimization algorithms have been developed to 

tackle the challenge of training neural networks 

efficiently and effectively [17]. Gradient descent, 

the most widely used optimization technique, 

updates the network parameters in the direction of 

the steepest descent of the loss function. Variants 

of gradient descent, such as stochastic gradient 

descent (SGD), mini-batch gradient descent, and 

adaptive learning rate methods (e.g., Adam, 

RMSprop), offer convergence speed and stability 

improvements. In addition to traditional 

optimization methods, nature-inspired 

optimization algorithms have gained popularity 

for optimizing the parameters of neural networks 

[18]. These algorithms, inspired by natural 

phenomena or biological processes, mimic the 

behavior of natural systems to search for optimal 

solutions in complex search spaces. Examples 

include genetic algorithms, particle swarm 

optimization, simulated annealing, and ant colony 

optimization. The integration of neural networks 

and optimization algorithms represents a powerful 

paradigm for predictive modeling, offering 

flexibility, scalability, and robustness in handling 

diverse datasets and tasks [19, 20]. By leveraging 

the capabilities of neural networks to learn from 

data and the efficiency of optimization algorithms 

to fine-tune model parameters, researchers and 

practitioners can develop sophisticated predictive 

models capable of tackling real-world challenges 

across various domains [21]. 

The problem addressed in this research is the need 

to accurately predict energy-related carbon 

dioxide (CO2) emissions in Western Europe. With 

increasing concerns about climate change and 

environmental sustainability, there is a growing 

demand for effective methods to forecast CO2 

emissions and understand their drivers and trends. 

Traditional approaches to prediction may lack the 

precision and flexibility required to capture the 

complex relationships and dynamics inherent in 

energy systems and environmental processes [22]. 

Therefore, there is a need to explore innovative 

methods that can enhance the accuracy and 

reliability of CO2 emission predictions, thereby 
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informing policy decisions and supporting efforts 

to mitigate climate change [23]. 

To develop a predictive model for energy-related 

CO2 emissions in Western Europe using a neural 

network approach. To investigate the 

effectiveness of integrating nature-inspired 

optimization algorithms, specifically Multiverse 

Optimization (MVO), League Championship 

Algorithm (LCA), and Evaporation Rate Water 

Cycle Algorithm (ERWCA), with the neural 

network model to improve prediction accuracy. 

To compare the performance of the integrated 

model with traditional prediction methods in 

terms of R-squared (R
2
) and Root Mean Square 

Error (RMSE). To analyze the key drivers and 

trends of CO2 emissions in Western Europe 

identified by the predictive model and provide 

insights for policymakers and stakeholders. To 

assess the potential implications of the research 

findings for climate change mitigation strategies, 

environmental policy development, and 

sustainable energy planning in Western Europe. 

By addressing these research objectives, this study 

aims to contribute to advancing predictive 

modeling techniques for CO2 emissions and 

provide valuable insights for addressing the 

challenges of climate change and promoting 

environmental sustainability in Western Europe 

and beyond. 

2. Literature Review 

Carbon dioxide (CO2) emission prediction 

models, neural networks, and optimization 

algorithms have been extensively studied in the 

literature, reflecting the importance of 

understanding and mitigating the impacts of 

anthropogenic greenhouse gas emissions on the 

environment and climate. Numerous studies have 

focused on developing CO2 emission prediction 

models to forecast future emissions trends and 

assess the effectiveness of mitigation strategies 

[24-26]. These models often integrate various 

socioeconomic, demographic, and environmental 

factors to capture the complex dynamics of energy 

consumption and emissions [27, 28]. Traditional 

regression-based approaches, such as linear 

regression and autoregressive models, have been 

widely used for CO2 emission prediction [2, 29, 

30]. However, they may struggle to capture 

nonlinear relationships and complex interactions 

among variables. Recent advancements in 

machine learning and data-driven techniques, 

particularly neural networks, have shown promise 

in improving the accuracy and flexibility of CO2 

emission prediction models [31-33]. Neural 

network models, including feedforward neural 

networks, recurrent neural networks (RNNs), and 

convolutional neural networks (CNNs), have been 

applied to capture nonlinear patterns in emissions 

data and make accurate forecasts. These models 

can handle large datasets, learn complex 

relationships, and adapt to changing conditions, 

offering advantages over traditional approaches 

[19]. 

Neural networks have emerged as powerful tools 

for predictive modeling across various domains, 

including finance, healthcare, and environmental 

science [34, 35]. Their ability to learn from data 

and extract intricate patterns makes them well-

suited for classification, regression, and time-

series forecasting tasks. In the context of CO2 

emission prediction, neural networks have been 

applied to analyze historical emission data, 

identify trends and patterns, and forecast future 

emissions trajectories. However, challenges 

remain in training and optimizing neural 

networks, including selecting appropriate 

architectures, tuning hyperparameters, and 

addressing overfitting [36]. Additionally, the 

interpretability of neural network models can be 

limited, making it challenging to extract 

actionable insights and understand the underlying 

mechanisms driving predictions [37]. 

Optimization algorithms are crucial in training 

neural networks by minimizing a predefined loss 

function and fine-tuning model parameters [38]. 

Gradient-based optimization methods, such as 

gradient descent and its variants (e.g., stochastic 

gradient descent, Adam), are commonly used to 

update network weights and biases iteratively 

[39]. These methods are efficient and effective for 

convex optimization problems but may struggle 

with non-convex loss surfaces and saddle points. 

Inspired by biological or natural processes, 

nature-inspired optimization algorithms have 

gained popularity for optimizing neural network 

parameters and addressing the limitations of 

gradient-based methods [40]. Genetic algorithms, 

particle swarm optimization, simulated annealing, 

and ant colony optimization are among the most 

widely studied nature-inspired algorithms [41-43]. 

These algorithms offer alternative search 

strategies, explore diverse regions of the 

parameter space, and can escape local optima, 

making them suitable for complex, high-

dimensional optimization problems. 

The literature review highlights the growing 

interest in CO2 emission prediction models, neural 

networks, and optimization algorithms as tools for 

understanding and mitigating climate change. 
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While traditional regression-based models have 

been prevalent, machine learning techniques, 

particularly neural networks, offer opportunities 

for improving prediction accuracy and capturing 

complex relationships in emissions data [2]. 

Gradient-based and nature-inspired optimization 

algorithms are critical in training neural networks 

and enhancing performance. Future research 

should focus on developing hybrid models that 

integrate neural networks with optimization 

algorithms to improve CO2 emission predictions 

further and support informed decision-making for 

climate change mitigation and environmental 

sustainability. 

While existing research on carbon dioxide 

(CO2) emission prediction models, neural 

networks, and optimization algorithms has made 

significant progress, several gaps remain that our 

study aims to address: 

1. Integration of Nature-Inspired 

Optimization Algorithms with Neural 

Networks: While there is ample research 

on the application of neural networks and 

optimization algorithms separately, there is 

a lack of comprehensive studies that 

explore the integration of nature-inspired 

optimization algorithms, such as MVO, 

LCA, and ERWCA, with neural networks 

for CO2 emission prediction. Our study 

seeks to fill this gap by investigating the 

effectiveness of combining these algorithms 

with neural networks to enhance prediction 

accuracy. 

2. Evaluation of Multiple Optimization 

Algorithms: Many existing studies focus 

on a single optimization algorithm or 

compare only a few alternatives. Our 

research aims to broaden the scope by 

evaluating the performance of three distinct 

nature-inspired optimization algorithms in 

combination with neural networks. By 

comparing the effectiveness of MVO, LCA, 

and ERWCA, we can provide insights into 

the relative strengths and weaknesses of 

different optimization strategies for CO2 

emission prediction. 

3. Assessment of Predictive Performance 

Metrics: While some studies evaluate 

prediction accuracy using standard metrics 

such as R-squared (R
2
) and Root Mean 

Square Error (RMSE), there is a need for 

more comprehensive evaluation 

frameworks that consider additional 

performance metrics and assess model 

robustness across different datasets and 

scenarios. Our study aims to address this 

gap by rigorously evaluating the predictive 

performance of the integrated model using 

multiple metrics and conducting sensitivity 

analyses to assess model stability and 

generalization capabilities. 

4. Analysis of Policy Implications: Despite 

the importance of CO2 emission prediction 

for informing climate policies and 

mitigation strategies, many existing studies 

focus primarily on technical aspects of 

modeling without considering the broader 

policy implications of their findings. Our 

research seeks to bridge this gap by 

analyzing our predictive model's policy 

implications, providing insights for 

policymakers and stakeholders in designing 

effective climate policies and promoting 

sustainable energy practices in Western 

Europe. 
 

By addressing these gaps in current research, our 

study aims to contribute to advancing predictive 

modeling techniques for CO2 emission prediction 

and provide valuable insights for decision-makers 

in addressing the challenges of climate change 

and environmental sustainability. 

3. Materials and methods 

In our methodology, we employed a hybrid 

approach that combines the strengths of two 

distinct predictive modeling techniques: neural 

networks and optimization algorithms. This 

hybrid method harnesses the power of neural 

networks to capture complex relationships and 

patterns in the data while simultaneously 

leveraging optimization algorithms to fine-tune 

model parameters and enhance predictive 

accuracy. Specifically, we utilized MVO, LCA, 

and ER-WCA as optimization algorithms, each 

offering unique advantages in optimizing the 

neural network structure. By integrating these 

algorithms into the training process, we aimed to 

improve the model's ability to learn from data and 

generate accurate predictions of energy-related 

CO2 emissions in Western Europe. This hybrid 

methodology represents a novel approach to 

predictive modeling, offering a promising avenue 

for enhancing the performance and robustness of 

CO2 emission prediction models. Only modeling 

methodologies, modeling method validation, and 

optimization algorithm analysis may lead to 

achieving the abovementioned objectives. Figure 

1 shows these phases, which are explained in 

greater detail below.
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Figure 1. An outline of the modeling procedure 

 

3.1. Artificial Neural Network  

A two-layered feedforward neural network from 

the Matlab ANN Toolbox was used to predict 

carbon dioxide emissions. The Levenberg-

Marquardt method from the Matlab ANN 

Toolbox was used to train the ANN network. 

Three components comprise the ANN: an output 

layer with a linear output function, a hidden layer 

with a sigmoid activation function, and an input 

layer. Using a random initialization increased the 

accuracy of the forecasts. The buried layer's 

sigmoid transfer function allows for handling 

nonlinear data. The outcome is condensed to lie 

between 0 and 1, with the input ranging from plus 

to negative infinity [44]. The sigmoid activation 

function is shown in equation (1). 

 
𝑓(𝑥) = 1/(1 + 𝑒𝑥𝑝−𝑥)  (1) 

 

The output neuron determined the amount of 

carbon dioxide released, while the input neurons 

watched the variable data. It was shown that the 

best model structure was obtained when the 

number of hidden neurons was increased from 1 

to 10. Thirty percent of the data set went into 

creating training and test data sets (70 percent). 

The network has been trained to determine the 

ideal weights for cost-effectiveness. A cost 

function system was implemented to ascertain the 

best fit across the model iterations. The training 

was stopped after the error reduction failed six 

times a row to avoid overfitting. The primary 

outcome of this study was the estimation of 

carbon dioxide emission, which was ultimately 

projected using the best predictive network. Four 

statistical indicators were calculated for the 

models for both training and testing. The R
2
, mean 

squared error (MSE), root mean square error 

(RMSE), and mean absolute error (MAE) are all 

described in equations (2)-(5). These statistical 

criteria were used to estimate the derived models' 

accuracy. For instance, the model's accuracy was 

evaluated using RMSE, while its robustness was 

evaluated using R
2
. In this case, the measured 

value is 𝑦𝑘 , the predicted value is 𝑦𝑘̂ , and the 

mean value of, 𝑦𝑘  is 𝑦̅ . There are n samples in 

total.  

 

RMSE = √(∑(𝑦𝑘̂ − 𝑦𝑘)
2

𝑛

𝑘=1

) /𝑛 (2) 

 

R2 = 1 − (
(∑ (𝑦𝑘̂ − 𝑦𝑘)

2𝑛
𝑘=1 )

(∑ (𝑦𝑘 − 𝑦̅)
2𝑛

𝑘=1 )
) (3) 

                                                        

MSE = (∑(𝑦𝑘̂ − 𝑦𝑘)
2

𝑛

𝑘=1

)/𝑛 (4) 

                                                         

MAE =
1

𝑛
∑(𝑦𝑘̂ − 𝑦𝑘) 

𝑛

𝑖=1

 (5) 
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Figure 2. Diagram illustrating the ANN algorithm 

3.1. Multiverse Optimization (MVO) 

According to [45], Wormholes, white holes, and 

black holes are the three main pillars of the 

multiverse theory in physics, and they are the 

mathematical models created using the MVO 

approach. Let each variable in the optimization 

problem reflect one of the following universes 

concerning laws. A variation in the inflation rate 

affects some but not all items in the universe 

through wormholes that lead to the ideal state. 

Objects are more likely to pass via white holes in 

universes with higher inflation rates and those 

with lower inflation rates through black holes. 

Higher inflation rates are linked to white holes, 

whereas lower inflation rates are linked to black 

holes. The MVO algorithm is described as follows 

in brief: 

Step 1: Set the universe's initial values, 

maximum repetitions, maximum iterations, 

interval variable [lb, ub], and universe location. 

Step 2: To locate a white hole based on the 

inflation rate of the universe, use a roulette wheel 

selection approach. 

 

𝑥𝑖
𝑗
= {𝑥𝑘

𝑗
  𝑟1 < 𝑁𝐼(𝑈𝑖) 𝑥𝑖

𝑗
  𝑟1 ≥ 𝑁𝐼(𝑈𝑖)  (6) 

 

where 𝑟1 is a randomly generated number from 

the interval [0, 1]; 𝑈𝑖  is the ith universe; 𝑥𝑖
𝑗
 is the 

ith universe's jth parameter; 𝑥𝑘
𝑗

 is the kth 

universe's jth parameter selected by the roulette 

process; and 𝑁𝐼(𝑈𝑖)  is the universe's normative 

inflation rate. 

Step 3. It is time for a wormhole existence 

probability (WEP), a travel distance rate (TDR) 

update, and a boundary check. 

 

𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∙ (
𝑚𝑎𝑥 − 𝑚𝑖𝑛

𝐿
) (7) 

𝑇𝐷𝑅 = 1 −
𝑙
1
𝑝

𝐿
1
𝑝

 (8) 

 

The numbers l for the current iteration, L for the 

maximum number of repetitions, and p for the 

accuracy of the exploitation stand for the highest 

and lowest WEP values, respectively. In the MVO 

model, low WEP and high TDR encourage 

exploration and the avoidance of local optima, 

whereas high WEP and low TDR enhance 

exploitation [46]. 

Step 4: Find the current inflation rate in the 

universe. The cosmos shifts if the rate of inflation 

rises over its present value. In all other 

circumstances, the cosmos seems to continue 

existing. 

Step 5: Update the position of the universe as 

provided by Equation (13). 

 

𝑥𝑖
𝑗
=

{
 
 

 
 
{
𝑋𝑗 + 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗)   𝑟3 < 0.5

𝑋𝑗 − 𝑇𝐷𝑅 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑟4 + 𝑙𝑏𝑗)    𝑟3 ≥ 0.5

𝑥𝑖
𝑗
                 𝑟2 ≥ 𝑊𝐸𝑃(𝑖)

 𝑟2 < 𝑊𝐸𝑃    (9) 

 

where r2, r3, and r4 are random values chosen 

from the range [0, 1]; 𝑢𝑏𝑗  is the jth variable's 

upper bound; and, 𝑙𝑏𝑗  is its lower bound. Where 

𝑋𝑗 is the jth parameter of the best universe at that 

instant. 

Step 6: criteria for termination. If the 

prerequisites for termination are met, the required 

output is produced. If not, an extra iteration is 

performed, and Step 2 of the procedure is 

followed. 

3.3. League Championship Algorithm (LCA) 

Like other evolutionary algorithms, the LCA 

operates on a population of people [47]. As a 

result, during the initialization stage, a league 

(population) of L (the league size) teams 

(solutions) is formed, and their playing 

characteristics (fitness values) are evaluated. 

Every team will have n players if we analyze a 

function with n variables, where n is the number 

of variables. For now, the setups that work well 

for the teams take advantage of the starting 

settings. The competition is the next stage. 

According to the league schedule, the clubs play 

each other in pairs for 𝑆 × (𝐿 − 1) weeks, where S 

is the number of seasons and t is the week. There 

is no tie regarding the results of the games or 

matches between teams I and J. Wins and losses 

are shown for each outcome. The performance of 
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each squad determines this. Every team designs a 

new configuration during the recuperation time 

based on what performed well in the previous 

week's play and what is currently its finest 

formation. The selection process in LCA is 

voracious. It swaps out the current configuration 

for the best one with a more powerful and 

efficient one. Stated differently, the new 

configuration is the best alternative for the team. 

It should be considered the fittest one if it is the 

best answer discovered thus far for the ith 

member of the population. Upon meeting the 

halting criterion, the algorithm terminates. 

A few terms we used in explaining the LCA 

technique need to be defined and thoroughly 

explained. These concepts include creating the 

league schedule and determining whether the 

team is winning or losing. Further information on 

these ideas is provided in the sections that follow. 

3.3.1. Generating a league schedule 

Creating a schedule containing every game for 

every season is the first step in creating the 

illusion of a championship setting, complete with 

teams vying for supremacy. Throughout the 

season, each team plays each other once in a 

round-robin style. Since 𝐿/2  matches would be 

played in parallel during each of the (𝐿 −  1) 
weeks if there are 𝐿 (an even number of teams), 

there will be 𝐿 (𝐿 −  1)/2 matches (if 𝐿 is an odd 

number, there would be 𝐿 weeks with (𝐿 −  1)/2 

matches and one team would play no games 

during any given week). After that, the 

championship lasts for S more seasons [47]. 

3.3.2. Determining winner/loser 

Each squad participates in the LCA and plays 

against other squads; no team may win or lose a 

game. After a game, a team's result is determined 

stochastically using the playing strength criterion 

as long as the likelihood of a team winning is 

commensurate with its fit level. According to 

[47], The degree of fit is determined by the 

distance with an ideal reference point and is 

associated with the team's playing strength. 

3.4. Evaporation Rate Water Cycle Algorithm 

(ERWCA) 

Sadollah, et al. [48] introduced a novel search 

strategy called the evaporation rate-water cycle 

algorithm (ER-WCA). This approach modifies the 

WCA technique as originally proposed [48]. Two 

instances of how nature influences the WCA 

algorithm are the water cycle and water flowing 

toward the ocean. During the hydrological cycle, 

water from streams evaporates and is used by 

plants for photosynthesis. Once the vapor enters 

the atmosphere, it condenses as clouds. 

Depending on the weather, water re-enters the 

earth in various states. According to this system, 

rivers are excellent persons, while other water 

flows are called streams. In the event when 𝐾 

represents the issue's magnitude, the potential 

streams are 𝑥1, 𝑥2, … , 𝑥𝑘. The initial population is 

created at random, as seen below: 
 

Total population =

[
 
 
 
 
 
 
 
 

𝑆𝑒𝑎
𝑅𝑖𝑣𝑒𝑟1
𝑅𝑖𝑣𝑒𝑟2
⋮

𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑠𝑟+1

𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑠𝑟+2

⋮
𝑆𝑡𝑟𝑒𝑎𝑚𝐾𝑝𝑜𝑝 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝑥1
1

𝑥1
2

⋮

𝑥1
𝐾𝑝𝑜𝑝

𝑥2
1

𝑥2
2

⋮

𝑥2
𝐾𝑝𝑜𝑝

…
…
⋮
⋯

𝑥𝑘
1

𝑥𝑘
2

⋮

𝑥𝑁
𝐾𝑝𝑜𝑝

]
 
 
 
 

 

(10) 

 

where the swarm size is indicated by 𝐾𝑝𝑜𝑝. The 

intensity of flow for each approach is computed 

using Equation 10:  
 

Cost𝑖 = 𝑓(𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝐾
𝑖 )     𝐼 = 1, 2, … , 𝐾𝑝𝑜𝑝  (11) 

 

Because rivers and seas are made up of the best-

performing individuals, 𝐾𝑆𝑡𝑟𝑒𝑎𝑚𝑠  denotes the 

portion of the population that may yet flow into 

rivers or the sea. The amount of water drawn from 

the sea or river varies depending on the strength 

of the flow. The bellows show the estimated 

distribution of streams to each river and the sea. 
 

𝐶𝑛 = 𝐶𝑜𝑠𝑡𝑛 − 𝐶𝑜𝑠𝑡𝐾𝑠𝑟+1   

𝑛 = 1, 2, … , 𝐾𝑠𝑟 
(12) 

 

𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑{|
𝐶𝑛

∑ 𝐶𝑛
𝐾𝑠𝑟
𝑛=1

× 𝐾𝑆𝑡𝑟𝑒𝑎𝑚𝑠|  (13) 

 

The symbols indicate the number of streams 

flowing toward a particular river or sea 𝑁𝑆𝑛. The 

fitness function distributes streams proportionally 

between rivers and the sea since more streams 

flow into the sea. In the natural world, specific 

streams unite to create new rivers. Figure 3 

illustrates the path a stream travels in the direction 

of a river when there is only one sea and 𝐾𝑠𝑟−1 

rivers among a population of 𝐾𝑝𝑜𝑝  people. 

Additional information on the proposed 

methodology may be found in related papers [49]. 
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Figure 3. The direction in which a stream flows toward a particular river [48]. 

 

4. Established database 

Based on these inputs, neural networks and 

optimization techniques were employed to predict 

the nations of Western Europe's carbon dioxide 

emissions. By considering these variables as 

inputs, this study aims to identify the relationship 

between fuel use, economic activity (as shown by 

GDP), and carbon dioxide emissions. This 

facilitates the analysis and understanding of the 

factors affecting greenhouse gas emissions in the 

countries of Western Europe throughout the 

selected period. Fuel consumption parameters 

allow the models to consider each nation's various 

energy sources—non-renewable and renewable. 

This acknowledges the need to account for 

various energy sources in determining carbon 

dioxide emissions. 

Furthermore, by using GDP as an input variable, 

the models may incorporate the economic activity 

of any country. GDP may be used as a stand-in for 

factors such as energy use, industrial output, and 

overall economic expansion that affect carbon 

dioxide emissions. Using fuel consumption and 

GDP as inputs, the models may examine the 

complex relationship between energy usage, 

economic development, and carbon dioxide 

emissions in Western European countries. It 

provides a more thorough analysis of the factors 

influencing emission patterns. Figure 4 shows the 

intakes and outputs of the Western European 

nations over several years. 

 

 

 

 

  

a) GDP (current US$) b) Coal (TPES) (TJ) 
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c) Crude oil (TPES) (TJ) 
d) Oil products (TPES + refineries production) 

(TJ) 

  

e) Natural gas (TPES) (TJ) f) Geothermal, Solar, etc (TPES) (TJ) 

  

g) Biofuels and waste industrial (TPES) (TJ) h) CO2 emissions (Mt of CO2) 

Figure 4: parameters for inputs and outputs. 
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5. Results and discussion 

Many networks with different numbers of layers 

and types of neurons have been constructed to 

determine the optimal configuration. Modifying 

the number of layers and neurons in a 

conventional ANN also affects the models' 

accuracy. The ideal network was constructed 

employing a feedforward back-propagation 

technique and an average of five hidden units 

based on the RMSE and R
2
 metrics. Many 

optimization methodologies begin with early 

optimization findings. With the highest score, the 

model offers the best prediction network. 

Fascinatingly, the ratings were based on the 

model's forecast accuracy. For example, a reduced 

RMSE results in a higher score for the stated 

model. The R
2
 increases with the score. The 

outcomes of these networks are therefore utilized 

in the following sections. Figure 5 displays the 

MSE fluctuations for each strategy. The initial 

optimization discovery phase will be the 

foundation for the subsequent optimization 

tactics. As a result, the outputs of these networks 

are utilized in the following sections. Predictable 

accuracy is higher in structures with a reduced 

MSE. The proposed model's predicted values can 

be used more precisely to solve regression and 

classification problems. The MSE variations 

between carbon dioxide emission prediction 

system estimations for the combined MVO, LCA, 

and ERWCA constructions are shown in Figure 5 

throughout several iterations. Based on these 

facts, MVO, LCA, and ERWCA have determined 

that 500, 250, and 150 ( 𝑁𝑝𝑜𝑝 ) are the best 

possibilities.  

 

 
 

(a) MVO-MLP 

 

(b) LCA-MLP 

 

(c) ERWCA-MLP 

Figure 5. MSE technique variation. 

5.1. Statistical Accuracy Assess 

A scoring system assigns a number based on an 

object's or person's performance or qualities. 

Different ranking strategies may be required for 

different circumstances and objectives. One well-

liked method is the total score rank strategy, 

which involves adding up each object or person's 

scores and assigning a score based on their total 

score. An alternative method—a term not 

frequently employed—is the color-scoring rank 

system. It may, however, reference a color-coded 

rating system that uses levels or categories. In the 

current study, for example, population sizes have 

been graded based on their R
2
 and RMSE values, 

with different colors indicating different 

performance levels. Throughout the grading 

process, R
2
 and RMSE are used to choose the top 

hybrid designs (Table 1). In the best hybrid 

approach for carbon dioxide emission, 500 swarm 
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populations are utilized for training and 

evaluating predictive modeling outputs (i.e., how 

effectively the algorithm could estimate carbon 

dioxide emission). It also demonstrates how 

closely step two's results adhere to phase one's. 

The network results for the different MVO–MLP, 

LCA–MLP, and ERWCA–MLP models are 

shown in Tables 1-3. 

Table 1 shows the results of using MLP neural 

networks in combination with MVO to anticipate 

CO2 emissions in Western Europe. The table 

displays the performance metrics for multiple 

MVO-MLP model configurations over a range of 

population sizes, including R
2
 and RMSE. Each 

configuration's training and testing datasets are 

assessed independently, and respective scores are 

given for each dataset. Furthermore, each 

configuration's overall performance is shown by 

its total score and rank. This table offers a 

thorough summary of the MVO-MLP models' 

predictive power for various population sizes, 

offering important context for understanding how 

well this method works for CO2 emission 

forecasting. 

The population size of 500 exhibits the most 

excellent performance among the population sizes 

examined in the MVO-MLP setups for estimating 

CO2 emissions in Western Europe. With this 

setup, the testing dataset's MVO-MLP model 

yields the lowest RMSE of 23.35054 and the most 

excellent R
2
 value of 0.9962. This suggests that 

the model, trained on a population of 500, exhibits 

remarkable precision in forecasting CO2 

emissions, accounting for a significant amount of 

the data's volatility. On the other side, a 

population of 400 people exhibits the lowest 

performance. The MVO-MLP model has the 

lowest R
2
 value of 0.9910 and the greatest RMSE 

of 35.89284 for the testing dataset in this setup. 

Even though this model is the least successful 

configuration, it is noteworthy that it has a 

reasonably good predicted accuracy, indicating 

the overall effectiveness of the MVO-MLP 

strategy. In conclusion, among the configurations 

examined, the MVO-MLP configuration with a 

population size of 500 proves to be the most 

successful in forecasting CO2 emissions, while the 

configuration with a population size of 400 is the 

least successful. These results emphasize how 

crucial population size selection is to maximizing 

the MVO-MLP model's effectiveness in CO2 

emission prediction. 

 
Table 1. The network results for several MVO-MLP setups. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 30.69459 0.9934 40.17346 0.98567 2 2 6 6 16 7 

100 29.69849 0.9938 39.67891 0.98602 7 7 7 7 28 3 

150 28.42438 0.9944 37.95892 0.98722 8 8 9 9 34 2 

200 29.8752 0.9938 38.84735 0.98661 5 5 8 8 26 5 

250 25.38279 0.9955 40.97803 0.98508 9 9 5 5 28 3 

300 30.17235 0.9936 43.77443 0.98296 4 4 3 3 14 8 

350 30.45397 0.9935 47.18794 0.98017 3 3 2 2 10 9 

400 35.89284 0.9910 47.72456 0.97971 1 1 1 1 4 10 

450 29.73643 0.9938 42.28497 0.98411 6 6 4 4 20 6 

500 23.35054 0.9962 33.8724 0.98983 10 10 10 10 40 1 

Table 2 shows the best and worst population sizes 

for predicting CO2 emissions in Western Europe 

using the LCA and MLP configurations. The best-

performing configuration is observed with a 

population size of 250, achieving the lowest 

RMSE of 38.251 and the highest R
2
 value of 

0.9898 for both the training and testing datasets. 

This configuration demonstrates exceptional 

predictive accuracy and robustness, indicating that 

a moderate population size allows for compelling 
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solution space exploration, leading to superior 

model performance. Conversely, the worst-

performing configuration is associated with a 

population size of 150, exhibiting the highest 

RMSE of 47.02609 and the lowest R
2
 value of 

0.9845 for both the training and testing datasets. 

Despite a smaller population size, this 

configuration fails to capture the complexities of 

the CO2 emission prediction task adequately. The 

limited population size may restrict the 

exploration of potential solutions, resulting in 

suboptimal model performance and decreased 

predictive accuracy. Comparing the best and 

worst population sizes highlights the importance 

of population size selection in the LCA for MLP 

neural networks. Optimal performance is achieved 

with a moderate population size, enabling 

compelling exploration of the solution space and 

yielding accurate predictions of CO2 emissions in 

Western Europe. 

 

 

 
Table 2. The network results for several LCA-MLP setups. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 46.62401 0.9848 55.4547 0.97251 2 2 4 4 12 8 

100 44.45728 0.9862 58.39934 0.96947 4 4 3 3 14 7 

150 47.02609 0.9845 60.23934 0.96748 1 1 1 1 4 10 

200 45.23428 0.9857 58.74578 0.9691 3 3 2 2 10 9 

250 38.25115 0.9898 48.12728 0.97937 10 10 10 10 40 1 

300 42.72072 0.9872 52.4199 0.97547 8 8 9 9 34 2 

350 43.68125 0.9866 52.75155 0.97516 5 5 8 8 26 5 

400 42.30209 0.9875 53.34104 0.97459 9 9 6 6 30 3 

450 43.62747 0.9867 54.80796 0.97316 6 6 5 5 22 6 

500 42.84902 0.9871 52.96821 0.97495 7 7 7 7 28 4 

 

Table 3 shows the best and worst population sizes 

for predicting CO2 emissions in Western Europe 

using the ERWCA in conjunction with MLP 

configurations. The best-performing configuration 

is associated with a population size of 150, 

achieving the lowest RMSE of 17.99364 and the 

highest R-squared (R
2
) value of 0.9977 for both 

the training and testing datasets. This 

configuration demonstrates exceptional predictive 

accuracy and robustness, indicating that a 

moderate population size allows for practical 

solution space exploration, leading to superior 

model performance. On the other hand, the worst-

performing configuration is observed with a 

population size of 400, exhibiting the highest 

RMSE of 26.28317 and the lowest R
2
 value of 

0.9952 for both the training and testing datasets. 

Despite being a larger population size, this 

configuration fails to adequately capture the 

complexities of the CO2 emission prediction task. 

The excessive population size may lead to 

overfitting or inefficient solution space 

exploration, resulting in suboptimal model 

performance and decreased predictive accuracy. 

Comparing the best and worst population sizes 

highlights the importance of population size 

selection in the ERWCA for Multi-layer 

Perceptron (MLP) neural networks. Optimal 

performance is achieved with a moderate 

population size, enabling compelling exploration 

of the solution space and yielding accurate 

predictions of CO2 emissions in Western Europe. 
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Table 3. The network results for several ERWCA-MLP setups. 

Population 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 18.13245 0.9977 33.58319 0.99001 7 7 4 4 22 7 

100 22.01718 0.9966 42.6357 0.98384 3 3 1 1 8 8 

150 17.99364 0.9977 30.13947 0.99196 8 8 10 10 36 1 

200 19.19307 0.9974 31.53503 0.99119 4 4 9 9 26 4 

250 17.52497 0.9979 33.45542 0.99008 10 10 5 5 30 3 

300 17.85191 0.9978 32.29247 0.99076 9 9 7 7 32 2 

350 18.22919 0.9977 33.26106 0.9902 6 6 6 6 24 6 

400 26.28317 0.9952 41.03856 0.98504 1 1 3 3 8 8 

450 23.04591 0.9963 42.19242 0.98418 2 2 2 2 8 8 

500 19.06265 0.9975 31.55152 0.99118 5 5 8 8 26 4 

 

The outcomes of the second stage are derived by 

contrasting the actual data with the hybrid design's 

anticipated values. The R
2
 is a popular technique 

for determining which hybrid design is optimal. 

As previously said, the graph illustrates how a 

binary classifier system's diagnostic capabilities 

are affected when the discriminating threshold is 

changed. The model's ability to distinguish 

between positive and negative categories 

improves as R
2
 increases. The best-fit structural 

R
2
 plots for the hybrid MVO-MLP, LCA-MLP, 

and ERWCA-MLP models are displayed in 

Figure 6-8. The best prediction model (based on 

the recommended hybrid MVO-MLP, LCA-MLP, 

and ERWCA-MLP models) was developed for 

population sizes of 500, 250, and 150 based on the 

results of the iteration phase.  

 

  

(a) MVOMLP-Np=50 (b) MVOMLP -Np=100 
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(c) MVOMLP -Np=150 (d) MVOMLP -Np=200 

  

(e) MVOMLP -Np=250 (f) MVOMLP -Np=300 

  

(g) MVOMLP -Np=350 (h) MVOMLP -Np=400 
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(i) MVOMLP -Np=450 (j) MVOMLP -Np=500 

Figure 6: shows the accuracy results for MVO-MLP model-based best-fit architectures. 

 

  

(a) LCAMLP-Np=50 (b) LCAMLP -Np=100 

  

(c) LCAMLP -Np=150 (d) LCAMLP -Np=200 
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(e) LCAMLP -Np=250 (f) LCAMLP -Np=300 

  

(g) LCAMLP -Np=350 (h) LCAMLP -Np=400 

  

(i) LCAMLP -Np=450 (j) LCAMLP -Np=500 

Figure 7. shows the accuracy results for LCA-MLP model-based best-fit architectures. 
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(a) ERWCAMLP -Np=50 (b) ERWCAMLP -Np=100 

  

(c) ERWCAMLP -Np=150 (d) ERWCAMLP -Np=200 

  

(e) ERWCAMLP -Np=250 (f) ERWCAMLP -Np=300 
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(g) ERWCAMLP -Np=350 (h) ERWCAMLP -Np=400 

  

(i) ERWCAMLP -Np=450 (j) ERWCAMLP -Np=500 

Figure 8. shows the accuracy results for ERWCA-MLP model-based best-fit architectures. 

 

5.2. Error analysis 

Figures 9-11 display the frequency in the best-

fitted structures for MVO-MLP, LCA-MLP, and 

ERWCA-MLP. The results from the training and 

testing datasets show an exceptionally high degree 

of agreement between the estimated and observed 

carbon dioxide emission measurements. Based on 

the findings of the training and testing datasets, 

the study concludes that there is a very high 

degree of agreement between the calculated and 

observed carbon dioxide emission measurements. 

This suggests that the models, which employ 

various techniques, such as MVO-MLP, LCA-

MLP, and ERWCA-MLP, are helpful for 

accurately estimating carbon dioxide emissions in 

the context of Western Europe. The remarkable 

level of agreement between the estimated and 

observed data indicates that the models match the 

underlying dynamics and patterns of carbon 

dioxide emissions quite well. It suggests that 

reliable emission estimates may be generated 

using this work's neural network models and 

optimization strategies.
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a) Training-500 

 

b) Testing-500 

Figure 9. The suggested frequency for the MVO-MLP method that works best 
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a) Training-250 

 

b) Testing-250 

Figure 10. The suggested frequency for the LCA-MLP method that works best 
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a) Training-150 

 

b) Testing-150 

Figure 11: The suggested frequency for the ERWCA-MLP method that works best 

 

5.3. Measurement of carbon dioxide emissions 

by optimization algorithms 

Table 4 shows the best and worst population sizes 

for predicting CO2 emissions in Western Europe 

across the three model structures. The best-

performing population size is associated with the 

ERWCAMLP model, utilizing the ERWCA with 

a population size of 150. This configuration 

achieves the lowest RMSE of 17.99364 and the 

highest R
2
 value of 0.9977 for both the training 

and testing datasets. The moderate population size 

of 150 allows for effective solution space 

exploration, leading to superior predictive 

accuracy and robustness. Conversely, the worst-

performing population size is observed with the 

LCAMLP model, utilizing the LCA with a 

population size of 250. This configuration exhibits 

the highest RMSE of 38.251 and the lowest R
2
 

value of 0.9898 for both the training and testing 

datasets. Despite a larger population size, the 

 [
 D

ow
nl

oa
de

d 
fr

om
 a

is
es

jo
ur

na
l.c

om
 o

n 
20

25
-1

1-
04

 ]
 

                            21 / 27

http://aisesjournal.com/article-1-35-en.html


Halil GÖR 
AI in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 81-107 

 

102 

 

LCAMLP model failed to adequately capture the 

complexities of the CO2 emission prediction task, 

resulting in suboptimal model performance and 

decreased predictive accuracy. Overall, comparing 

the best and worst population sizes underscores 

the importance of population size selection in 

optimizing predictive model performance for CO2 

emission prediction in Western Europe. Moderate 

population sizes allow for practical solutions for 

space exploration and yield accurate predictions. 

In contrast, excessively large or small population 

sizes may lead to overfitting or inefficient 

exploration, resulting in decreased model 

performance. 

 
Table 4. The MVO-MLP, LCA-MLP, and ERWCA-MLP structures' network results 

Proposed 

models 
Swarm 

size 

Training dataset Testing dataset Scoring Total 

Score 
Rank  

RMSE R2 RMSE R2 Training Testing  

MVOMLP 500 23.35054 0.9962 33.8724 0.98983 2 2 2 2 8 2 
 

LCAMLP 250 38.25115 0.9898 48.12728 0.97937 1 1 1 1 4 3 
 

ERWCAMLP 150 17.99364 0.9977 30.13947 0.99196 3 3 3 3 12 1 
 

5.4. Taylor Diagrams 

A Taylor diagram is a graphical representation 

commonly used in meteorology and climate 

science to assess the skill of models or 

observational datasets relative to a reference 

dataset. It plots the standard deviation of the 

model (or prediction) against the correlation 

coefficient with the reference dataset, with each 

model represented by a point on the diagram. The 

closer the point is to the reference dataset, the 

better the agreement between the model and the 

observations in terms of both variability and 

pattern correlation Taylor [50]. In the context of 

your paper, a Taylor diagram could be used to 

compare the performance of different predictive 

models (e.g., MVO-MLP, LCA-MLP, ERWCA-

MLP in terms of their ability to capture the 

variability and pattern correlation of energy-

related CO2 emissions compared to observed data. 

This visualization could provide a comprehensive 

assessment of model skills and help identify the 

most reliable and accurate model for predicting 

CO2 emissions in Western Europe. The pattern 

correlation coefficients for the MVO-MLP, LCA-

MLP, and ERWCA-MLP are 0.999. 

 

 

  

(a) Training (b) Testing 

Figure 12. Taylor Diagram for the CO2 emision 

5.5. Discussion 

Interpreting the results in the context of the 

research objectives provides valuable insights into 

the effectiveness of different optimization 

algorithms and population sizes for predicting 

CO2 emissions in Western Europe using neural 

network models. The results demonstrate that the 

choice of optimization algorithm significantly 
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impacts the predictive performance of the neural 

network models. The ERWCA-MLP model, 

utilizing the Evaporation Rate Water Cycle 

Algorithm (ERWCA), outperforms the MVOMLP 

and LCAMLP models regarding both RMSE and 

R-squared (R
2
) values for training and testing 

datasets. This suggests that ERWCA is more 

effective in optimizing the neural network 

parameters for accurate CO2 emission prediction 

in Western Europe than Multiverse Optimization 

(MVO) and LCA. The analysis reveals that the 

population size plays a crucial role in determining 

the predictive accuracy of the neural network 

models. The ERWCAMLP model with a 

population size of 150 achieves the best overall 

performance, indicating that a moderate 

population size allows for practical solution space 

exploration and yields accurate predictions. 

Conversely, the LCAMLP model with a 

population size of 250 exhibits the worst 

performance, suggesting that substantial 

population sizes may lead to suboptimal model 

performance. The comparison between the MVO-

MLP, LCAMLP, and ERWCAMLP models 

highlights the superiority of nature-inspired 

optimization algorithms, particularly ERWCA, 

over traditional methods. The ERWCAMLP 

model achieves the highest rank and total score, 

indicating its effectiveness in predicting CO2 

emissions in Western Europe compared to MVO 

and LCA. This underscores the importance of 

leveraging advanced optimization techniques to 

enhance the accuracy and reliability of predictive 

models for environmental applications. Overall, 

interpreting the results aligns with the research 

objectives by providing valuable insights into the 

effectiveness of different optimization algorithms 

and population sizes in predicting CO2 emissions 

in Western Europe. The findings contribute to 

advancing predictive modeling techniques for 

environmental science and provide practical 

guidance for policymakers and stakeholders in 

addressing climate change and promoting 

sustainable energy practices. 

Integrating neural networks with optimization 

algorithms leads to enhanced predictive accuracy 

compared to traditional methods. The results 

demonstrate that the combined models, such as 

ERWCAMLP, achieve lower Root Mean Square 

Error (RMSE) and higher R-squared (R
2
) values 

for both training and testing datasets, indicating 

improved model performance in capturing the 

underlying patterns and trends in CO2 emissions 

data. The combined models show improved 

generalization capabilities, as evidenced by their 

consistent performance on training and testing 

datasets. This suggests that integrating 

optimization algorithms helps mitigate overfitting 

and improves the model's ability to generalize to 

unseen data, resulting in more reliable predictions 

of CO2 emissions in Western Europe. 

Optimization algorithms play a crucial role in 

fine-tuning the parameters of neural networks to 

optimize their performance. By exploring the 

solution space and iteratively adjusting the 

network weights and biases, optimization 

algorithms facilitate the convergence of the model 

to an optimal solution, leading to improved 

predictive accuracy and robustness. 

The flexibility and adaptability of neural networks 

allow them to learn complex patterns and 

relationships from data, while optimization 

algorithms provide efficient methods for training 

and optimizing the model parameters. This 

combination enables the development of flexible 

and adaptable predictive models that capture the 

nonlinear dynamics and uncertainties inherent in 

CO2 emission prediction. While the results 

demonstrate the effectiveness of combining neural 

networks with optimization algorithms, there is 

potential for further exploration and optimization. 

Future research could investigate additional 

optimization algorithms, hybrid approaches, and 

ensemble techniques to enhance predictive 

accuracy and robustness for CO2 emission 

prediction and other environmental applications. 

Integrating neural networks with optimization 

algorithms offers a promising approach for 

improving the accuracy and reliability of CO2 

emission prediction models. By leveraging the 

complementary strengths of both techniques, 

researchers can develop more effective predictive 

models that contribute to addressing climate 

change and promoting environmental 

sustainability. The findings suggest that 

integrating neural networks with optimization 

algorithms, particularly nature-inspired algorithms 

like the ERWCA can significantly improve the 

accuracy of CO2 emission prediction models. 

Policymakers can leverage these advanced 

predictive models to understand current emission 

trends better, forecast future emissions 

trajectories, and identify key drivers of CO2 

emissions in Western Europe. This information 

can inform the development of evidence-based 

policies and regulations to reduce emissions and 

transition to more sustainable energy sources. 

The enhanced predictive accuracy of the 

combined models enables policymakers to 

identify specific sectors, regions, and activities 
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that contribute most to CO2 emissions. By 

targeting these high-emission areas with tailored 

mitigation strategies, such as incentives for 

renewable energy adoption, energy efficiency 

improvements, and carbon pricing mechanisms, 

policymakers can maximize the effectiveness of 

their interventions and accelerate progress toward 

emission reduction targets. Accurate CO2 

emission predictions facilitate informed decision-

making regarding resource allocation and 

investment in low-carbon technologies and 

infrastructure. By anticipating future emissions 

trends and identifying areas with the most 

significant potential for emission reduction, 

policymakers and investors can prioritize 

investments in clean energy, sustainable 

transportation, and climate-resilient infrastructure, 

thereby driving economic growth while reducing 

greenhouse gas emissions. 

Developing advanced predictive models for CO2 

emission prediction enables ongoing monitoring 

and evaluation of the effectiveness of climate 

policies and mitigation measures. By regularly 

updating and refining the predictive models based 

on new data and insights, policymakers can track 

progress toward emission reduction goals, assess 

the impact of policy interventions, and make 

timely adjustments to ensure alignment with long-

term climate objectives. 

The findings underscore the importance of 

international collaboration in addressing climate 

change and reducing CO2 emissions. By sharing 

best practices, data, and predictive modeling 

techniques, countries in Western Europe and 

beyond can collaborate to develop more accurate 

and robust emission prediction models, harmonize 

climate policies, and achieve collective emission 

reduction targets outlined in international 

agreements such as the Paris Agreement. The 

findings from integrating neural networks with 

optimization algorithms for CO2 emission 

prediction have far-reaching implications for 

environmental policy and decision-making. By 

harnessing the power of advanced predictive 

modeling techniques, policymakers can develop 

more effective strategies for mitigating climate 

change, fostering sustainable development, and 

safeguarding the health and well-being of current 

and future generations. 

 

6. Conclusions 

The study explores the integration of neural 

networks with three nature-inspired optimization 

algorithms—MVO, LCA, and ERWCA—for 

predicting CO2 emissions in Western Europe. The 

results indicate that ERWCA outperforms MVO 

and LCA in terms of predictive accuracy, 

achieving the lowest RMSE and highest R
2
 values 

for training and testing datasets. This suggests 

ERWCA is more effective in optimizing neural 

network parameters for CO2 emission prediction. 

 Moderate population sizes, such as 150 for 

ERWCA, lead to superior model 

performance compared to excessively large 

or small population sizes. ERWCA-MLP 

models with a population size of 150 

consistently exhibit the best performance, 

indicating the importance of population size 

selection in optimizing predictive model 

performance. 

 The study compares the performance of the 

integrated models MVOMLP, LCAMLP, and 

ERWCAMLP) with traditional methods. 

ERWCAMLP achieves the highest rank and 

total score, indicating its superiority in 

predicting CO2 emissions in Western Europe 

compared to MVO and LCA. 

 The findings have significant implications for 

environmental policy and decision-making. 

Accurate CO2 emission prediction models 

can inform policy formulation, targeted 

mitigation strategies, resource allocation, and 

international collaboration efforts to address 

climate change and promote environmental 

sustainability. 

Overall, the study highlights the effectiveness of 

integrating neural networks with optimization 

algorithms for CO2 emission prediction and 

underscores the importance of selecting 

appropriate optimization techniques and 

population sizes for optimizing model 

performance. 

Reflecting on the significance of our research 

contributions and envisioning potential avenues 

for future exploration, our study represents a vital 

step forward in advancing predictive modeling 

techniques for CO2 emission prediction. By 

investigating the integration of neural networks 

with nature-inspired optimization algorithms, such 

as MVO, LCA, and ERWCA, we shed light on 

the effectiveness of different optimization 

techniques and population sizes in optimizing 

predictive model performance. Our findings offer 

practical implications for informing 

environmental policy and decision-making and 

pave the way for future research endeavors. 

Moving forward, potential avenues for 

exploration include the development of hybrid 

models, ensemble techniques, and spatially 

explicit modeling approaches to improve 
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predictive accuracy and capture dynamic emission 

trends. Moreover, there is a need for uncertainty 

analysis, sensitivity testing, and interdisciplinary 

collaboration to address methodological 

challenges and foster innovation in the quest to 

mitigate climate change and promote 

environmental sustainability. Through 

collaborative efforts and interdisciplinary 

approaches, we can continue to push the 

boundaries of knowledge, develop holistic 

solutions, and make meaningful strides toward a 

more sustainable future. 
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