[ Downloaded from aisesjournal.com on 2025-11-04 ]

AI !E’\r:/‘lqir.'. b

~ (AISEE|

‘—

Al in Sustainable Energy and Environment (AISES)

Al in Sustainable Energy and Environment
Vol. 1, No. 1, 2025
109-122

Journal homepage:

Applicability of Grey Wolf Optimizer combined with Adaptive neuro-
fuzzy inference system estimating energy performance in residential

buildings

Mohamed Salem

School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal 14300, Penang, Malaysia

Avrticle Info

Abstract

Received 24 May 2025

Received in Revised form 27 May
2025

Accepted 31 May 2025
Published online 7 June 2025

DOI: ...

Keywords

ANFIS
Residential buildings

Metaheuristic

Planning, management, and energy conservation all benefit from accurate
predictions of building energy usage. The secret to ensuring energy systems'
performance and sustainability is continuously improving and enhancing forecasting
models' effectiveness. In this context, the current research presents, after studying and
evaluating several kinds of HL forecasting models, a new enhanced hybrid approach
of machine learning application for predicting residential buildings' heating load
(HL). The suggested hybrid model, GWO-ANIFS, combines the support vector
regression (GWO) and group technique of ANFIS models. The forecasting models
used the building’s technical characteristics as input factors, and the HL was chosen
as the network's output variable. The findings showed that the suggested ANFIS
approach with a 100-person population size was the best approach for forecasting
building energy because it had the highest R? (0.97905 and 0.9789) and the lowest
error amunts in the forms of MSE (0.012433), RMSE (0.1115), and MAE (0.088128)

for predicting HL.

Cooling-load

1. Introduction

Today, there is a far greater demand for energy
than ever, and the commercial and residential
sectors account for most of the world's enormous
energy use. As a result, regulating sectors like
construction and transportation and reducing
energy use may be complex challenges [1, 2]. Due
to the rising population, a recent study has shown
that residential structures account for a significant
portion of energy utilization [3, 4].
Comprehensive information about the facility's
performance is essential to monitor and improve a
building's energy usage. First, the building's
energy sources and end usage must be determined
[1]. The primary energy resources in a building
are natural gas, electricity, and district heating. At
the same time, the main end-use uses are heating,
ventilation, air conditioning (HVAC), elevators,
lighting, kitchen appliances, and domestic hot
water. Among the energy sources mentioned
above, sources and primary building applications,
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the HVAC operation schedule and interior and
outside circumstances are two essential variables
in determining how well a building performs [5,
6]. As a crucial component of a building's
infrastructure, HVAC is critical in influencing the
internal environment of residential structures by
contributing to or subtracting from the heating
load (HL) and cooling load (CL). These systems
use around 40% of the total energy, especially in
office buildings [7, 8], which is a severe cause for
worry. However, relatively few basic approaches
to enhancing the management and performance of
HVAC systems have been created. The HVAC
systems’ performance cannot be adjusted to
external climatic change because of the strong
influence of meteorological elements on CL and
HL; nonetheless, the poor efficiency of these
systems may increase energy consumption and
decrease comfort in cooling and heating [7, §].
Accurate  dynamic load forecasting and
sustainable construction management in urban
settings may be necessary to enhance HVAC
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system performance and reduce energy
consumption in residential buildings [9, 10].

Buildings with poor design and construction
use these technologies excessively, require a lot of
energy, and emit more carbon dioxide, roughly
40% more. In light of the growing worries about
energy loss and its detrimental impacts on the
environment, a more recent study has been
conducted globally on the buildings’ energy
performance (EPB) [11-13]. One of the most
essential energy management methods to reduce
energy demand and save energy is designing
energy-efficient buildings with improved energy
conservation features. Initial forecast of CL and
HL in green structures may help with this.
Construction designers need knowledge of the
building specs and local weather conditions to
anticipate the necessary cooling and heating
capacity [14, 15]. Temperature is one of the most
critical climatic parameters in predicting the
buildings” HL and CL. Other important climatic
aspects include wind speed, humidity, and
pressure. The relative compactness of structures,
the size of the roof, the glazing area, the wall
surface, the height of the roof, the walls’ number,
and the area should all be considered when
calculating a building's CL and HL. [16, 17].

Building energy modeling tools are being
used extensively in different sectors to support
effective  design, energy-efficient structures’
optimum performance, and comparison of
buildings with similar sizes, where the influence
of a single changing variable is evaluated
throughout a range of amounts. The design and
comparison simulation findings in various works
have often accurately reflected the calculations
[20, 21] precisely.

Generally speaking, utilizing building energy
modeling software can be a good solution for
evaluating the effects of building design
indicators; however, this method is time-
consuming and requires expert users to perform
the simulations, and occasionally, there is
inconsistent accuracy in the estimated results in
different building simulation software packages
[18]. Thus, to anticipate the CL and HL of
buildings and examine the impact of different
architectural factors, new approaches, including
artificial neural networks, statistical analysis, and
machine learning, are used in specific research
[13, 14]. These approaches have the benefit that,
after appropriately training the model, a precise
and trustworthy answer may be achieved even
while modifying a few building design factors.
Additionally, techniques like statistical analysis
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help us better comprehend the effects of diverse
numbers that architects or designers have
concentrated on.

Principal component analysis (PCA) [19],
extreme learning machines (ELM) [8, 20],
applications of support vector machines (SVM)
[21-27], and k-means are among the data mining
approaches. In EPB and predicting the needed
energy for residential buildings, deep learning
techniques [26-34], decision trees (DT) [11],
various regression methods, artificial neural
networks [14, 18, 24, 35], and hybrid approaches
based on regression methods [36-38] have all
been utilized. The use of facade retrofitting
techniques to reduce the need for cooling and
heating in commercial and residential buildings is
examined in proper research [39].

A mixed-integer linear program (MILP) has
also been used to predict the optimum functioning
of the HVAC system in significant buildings [40].
A residential building's HL and CL were
forecasted  utilizing  multivariate  adaptive
regression splines (MARS), an ELM, and a hybrid
approach [20], where the building's structural
features were considered network inputs. In
different research [41], the residential structures’
HL and CL were forecasted using the ELM
approach to construct an energy-efficient building.
A deep neural network (DNN) was used in ref
[34] to forecast CL and HL, together with the
structural characteristics of the building as inputs.
Reference [42] used ANN techniques like FFNN,
radial basis function networks (RBFN), and
adaptive  neuro-fuzzy interference systems
(ANFIS) to predict a building’s HL for above-
normal energy usage detection on a university
campus. In this case, the heating usage from the
previous day, temperature data, and week's day
were chosen as network input parameters. In [10,
43], an ANN was used to predict the HL and CL
of a building to control the HVAC system. As
input variables for both studies, 11 air-handling
units and meteorological data, respectively, were
used. Reference [44] used the MLP approach and
considered the climatic data as network input
parameters to forecast the building’s HL. In a
different study [45], the MLP approach was used
to anticipate a building's CL and HL to construct
an energy-efficient architecture. The
meteorological and date data were taken into
consideration as input factors. [14] used machine
learning techniques such as general linear
regression, ANN, DT, support vector regression
(SVR), and ensemble inference models to
anticipate the CL and HL and analyze a building's
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energy efficiency. Reference [46] used six
regression models of data mining methods, where
the meteorological data, previous load usage, and
date and time information were taken as the
network’s input parameters, to predict the HL and
CL of a building in order to find the peak load of a
water source heat pump (WSHP) in the building
environment and supply the cooling and heating
demand. The CL and HL of a building were
predicted using the autoregressive with exogenous
(ARX) approach in [47], where the
meteorological data were regarded as network
input variables. This was done to control the
supply and demand of energy. [48] estimated the
energy needed for the HVAC system from the CL
and HL demand of the building by using several
regression models. In [49], the building’s HL was
predicted using multiple regression techniques
and considering certain environmental parameters
as network inputs, including thermal resistance,
sol-air temperature, and surface-to-volume ratio.
In [50], neural networks were used to extract a
black box method, which was the trained network,
and use it to predict CL and HL. Climate data,
such as temperature, wind speed, humidity, and
sunshine, were utilized as input data in their
methodology. Using multiple machine learning
approaches such as SVM, FFNN, RF, Gradient
Boosted Regression Trees, and XGBoost, the HL
and CL’s prediction linked with residential
buildings has been carried out in [51]. In [52], a
multi-layer hybrid approach (APNN) that takes
into account the technical details of the building
and meteorological data as its input has been
presented to anticipate a residential building’s HL
and CL.

Although several models have been put out
for predicting heat load, the models still have
drawbacks in terms of accuracy and time-
consuming calculations. ANN may be an
alternative to analytical approaches since they
have benefits, including fact calculation and no
internal system parameter knowledge
requirements [53-57]. This study aims to design
and evaluate heat load prediction models using the
Adaptive Neuro-Fuzzy Inference System (ANFIS)
[49] approach, a subset of the ANN family.

ANFIS has excellent prediction and learning
skills, which make it a wvaluable tool for
addressing system-level uncertainty. Deploying a
fuzzy inference system does not need prior
knowledge of the physical procedure [50]. The
fuzzy inference system and a neural network
learning model are combined to form ANFIS.
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The main aim of this investigation is to
develop an ANFIS for predicting the heat load of
residential structures. The basic idea underlying
the soft computing approach is gathering
input/output information and using them to infer
the proposed system. Using this technique, fuzzy
logic may change the participation capacity
settings to support the best. The results of an
inquiry are used to focus on gathering training and
data for the ANFIS system. Head load data from a
heating substation attached to the heating plant
"Krivi vir," an autonomous component of Serbia's
Nis district heating system, was measured and
obtained as case studies, or ANFIS training data,
for the currently built neural network. The
primary aim of this research is to assess the
ANFIS's capabilities for predicting heat load and
exploring the potential for use in a brand-new
distributed intelligent control scheme for DH
systems.

The rest of this essay is structured as follows:
The case study and the dataset are introduced in
Section 2. Section 3 of the proposal details its
suggested techniques. The results of the HL
forecasting utilizing the provided approaches are
shown in Section 4. The article is concluded in
Section 6.

2. Established database

Using Ecotect software, Tsanas and Xifara
(2012) simulate a dataset with 12 alternative
building forms [58]. The simulations' buildings
were considered to be situated in Greece, namely
Athens. Building forms were developed
considering the original cubes (3.5 x 3.5 x 3.5),
each with 18 parts. Each building had a 771.75
m3 volume and was made of the same materials.
The simulated structures varied in orientation,
glazing area, interior size, glazing area
distribution, and a few other factors.

The dataset included 768 simulated buildings,
each with eight distinguishing characteristics
(treated as input parameters and denoted in the
data by the letter X) and two valuable replies (HL
intended as an output variable and marked with
Y). Table 5 illustrates the number of potential
amounts for this data [58], the output and input
parameters, and each variable's mathematical
definition.

Three kinds of glazing are considered for the
glazing regions depending on the floor area: 10%,
25%, and 40%. Additionally, five distinct
distribution scenarios were simulated for each
glazing area: (1) uniform: each side has 25%
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glazing; (2) north: each side has 55% glazing; (3)
east: each side has 55% glazing; (4) south: each
side has 55% glazing; and (5) west: each side has
55% glazing; all other sides have 15% glazing.
Additionally, we got examples without glazing.
The four cardinal points were finally turned to
face all forms (Figure 1).

Table 1. The output and input parameters are
mathematical symbols

Mathematical Variable Names Number of
Symbols Values
X1 Relative 12
Compactness
X2 Surface Area 12
X3 Wall Area 7
X4 Roof Area 4
X5 Overall Height 2
X6 Orientation 4
X7 Glazing Area 4
X8 Glazing Area 6
Distribution
Y1 Heating Load 568
e N
s S ~—

(LT A o~ L
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Figure 1: Data preparation’s graphical view

3. Methodology

To examine the data for estimating the
buildings” HL and to assess the outcomes, this
section briefly explains artificial neural network
methods and regression approaches.

3.1. Adaptive neuro-fuzzy interface system
(ANFIS)

Jang developed the ANFIS. It performed duties
similar to those of the first-order fuzzy inference
system. ANFIS can approximate any linear or
nonlinear system because it combines the neural
networks’ self-learning capability with the benefit
of fuzzy inference. In ANFIS, the fuzzy rule and
the membership function are derived through
learning with the data sets instead of experience
or intuitions. This is crucial for complicated
systems or systems with  underutilized
characteristics [59].
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Figure 4 [60] shows how the usual structure of
ANFIS is laid up. The output of the layer i's
membership functions was set to O (I, i), and the
system's input and output were X, y, and f,
respectively.

Figure 2: A typical ANFIS model’s structure.

The first layer: In this layer, the input signals
are converted into fuzzy values by the
corresponding nodes.

i=12

0, = Hai (%), ,
i =34 @

0, = UBj—2 ),

Here, A and B represent fuzzy sets, and O ;
denotes their membership function, which by
default follows a bell-shaped form.

The second layer: the output of this layer is
the product of calculating the fitness of each rule:

02 = w = pa(Xpgj(y), i =1,2 (2
The third layer: is normalizes the fitness of
each rule:

03'i == (1)/((1)1 + (1)2), 1 = 1, 2 (3)

The fourth layer: estimate the output of each
rule:
04 = 0fi = ®(pix + qiy +1;),i = 1,2 4)
The fifth layer: This layer contains a single

node responsible for computing the final output of
the system.

=y= wa_ﬁgw_f‘_: 1,2 ®)

ANFIS was trained using a hybrid approach
that included the test squares technique with black
propagation, which may aid the system in
modeling the data sets.

3.2. Grey
(GWO):

Initially, S. Mirjalilli presented the Grey Wolf
Optimizer (GWO) in 2014 [61]. This program
simulates the distinct hunting and prey-finding
behaviors of grey wolves. The GWO has adopted
the four-level social hierarchy of grey wolves,

Wolf Optimization Algorithm
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which includes wolves at the first, second, third,
and final levels. Wolves are in charge of leading,
directing, and controlling the whole pack of grey
wolves. Additionally, it oversees the whole
hunting procedure and makes all decisions related
to hunting, upholding order, and the resting and
waking hours for the entire pack. The wolf who is
the best contender to head the pack will solicit
input from the other wolves and pass it along to
the leader. The wolves of the fourth and final
level, known as the wolves, are subordinate to the
third level of grey wolves, or the wolves, who are
in charge of upholding the integrity and safety of
the wolf pack [61].

Using equation (6), the distances between the
three wolves, a, f and §, and D,, Dgand Dg,
are computed. From these distances, the impact of

the three wolves on the prey, )_()1,)?2 and )_()3, may
be estimated as shown in equation (7).

|
Dg=|C,- X —X|, (6)

_X)Z = _XB _KZ : ﬁB, (7)
i3 X5 — Az B5

K=2§'F1—§, (8)
6 =2 ?2

Xt+1) =X + X, + X3)/3 9)

Equation 9 determines the values of the
algorithm's governing parameters, a, A, and C.
(8). Here, accidental vectors [0; 1] are denoted by
r2 and rl. Thanks to these vectors, wolves may
now approach their prey at any point between
them. The GWO algorithm's activity is controlled
by the vector a, which is also used to calculate A.
Throughout repetitions, the component amounts
of a vector decline linearly from 2 to 0 [61]. C
makes it more difficult for the wolves to locate the
prey by adding additional weight. Finally, using
equation (9), all other wolves upgrade their
locations X (t+1).

Despite its youth, GWO is already being
employed in a wide variety of practical contexts.
For example, a improved version of the GWO
method was presented and successfully used for
training q-gaussian radial basis functional link
networks [62]; the binary version of the GWO
algorithm was suggested to be utilized for feature
selection, which was one of the significant and
crucial modifications of the GWO algorithm [63].
A modified GWO algorithm called the multiverse
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optimizer (MVO) was also proposed for solving
various optimization problems [64]. To reduce the
amount of CO, emissions from the capacitor, a
30-bus system was employed in a multi-objective
GWO model, and the GWO algorithm was then
used to optimize the DC motor's control
parameters [65, 66]. The GWO technique resolved
the stage 2 flow shop scheduling issue, and its
release time was optimized [67].

4. Results and Discussion

Figures 3 to 9 displays the outcomes for the
ANFIS heat load prediction algorithm. These
figures show scatter plots that compare expected
and observed heat load levels. The RMSE and R’
are well-known statistical measures used to
evaluate the ANFIS method’s capacities for heat
load forecasts in specified district heating systems
(R?). Figures 3 to 9 and Table 2 describe the
performance  findings of the suggested
approaches.

4.1. Accuracy Indicators

Many techniques may be utilized to guarantee
the correctness of findings and their assessment.
The performance of the suggested approaches is
evaluated in this work using the R, mean absolute
error (MAE), mean squared error (MSE), and
RMSE [68, 69]. The emphasis of each sign varies.
The calculated model's R* between the predicted
and actual values is shown. MAE displays the
mean distance between the anticipated value and
the actual value. The mean squared difference
between the predicted values and the exact value
of the proposed model is known as MSE, or mean
squared error. The RMSE identifies big mistakes
and evaluates the wvariation in method
responsiveness  concerning  variance.  The
approach’s performance will be modified by
increasing the amount of the R* indicator and
decreasing the amounts of MAE, MSE, and
RMSE. The following formulae [68] were used to
construct the statistical performance indicators for
the N number of inputs that were previously
mentioned:

, (X = X)) - (Y = V)T
R = S (%) -1 (10)

N

1

i=1
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N
1
I V)2
MSE = NZ(X1 Y) (12)

LiX —1)? (13)

RMSE =
N

Where the real amount, the mean of actual
value, the estimated amount, and the mean of

actual value are represented byJX;, X , Y;, and 17,
respectively.

The ANFIS network is first trained using the
data retrieved from the experimental calculation
process. Data were utilized for ANFIS testing by
20% and training by 80%. During the training
method, input fuzzification uses three bell-shaped
membership functions. There are 24 nonlinear and
80 linear parameters in the ANFIS network. The
ANFIS network uses 16 fuzzy rules. Three
experimental datasets were constructed in
accordance with the time steps to examine the
effect of the time step range on the ANFIS
prediction. For each dataset, a prediction of the
following four stages was made, and the outcomes
were compared. To contrast variations, several
prediction processes were explored.

4.2. Incorporated FIS with Optimizers

The amounts of each index are shown in this
diagram as the accuracy attained relative to their
ideal values. For instance, RMSE and R? should
be zero and one, respectively. For the GWO-
ANFIS approach in the training stage of the
current study, these indices are determined to have
values of 0.0.1115 and 0.97905, respectively.
Regarding RMSE and R’ values, it can be
deduced that the above model obtained 88.85%
(10.1115=0.8885) and 97.90%
(0.97905/1=0.97905)  accuracy. The same
conclusions about the accuracy of the other
indexes are made. Keep in mind that percentage-
based performance indexes should be translated to
decimal figures. In the current investigation, the
MSE value for ten swarm sizes (50, 100, 150,
200, 250, 300, 350, 400, 450, and 500) for HL is
shown in Fig. 3 as a function of iterations (1000
iterations). The lowest RMSE value produces the
best results. The swarm size of 100
(RMSE=0.1115 and 0.1093) produced the lowest
MSE value for GWO-ANFTIS, as shown in Figure
3 and Table 2. The 400 population size also had
the highest MSE value (RMSE=0.16468 and
0.1557), demonstrating the lowest performance in
forecasting HL in residential structures.
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Figure 13: Mean squared error variation versus
repetitions for the GWOANFIS

The work of Zhang et al. [48] was when rank
analysis was first introduced. This method, used
separately for the training and testing outcomes,
awarded the approach with the best value for each
index, a maximum rank (equivalent to the number
of approaches being compared). In contrast, the
approach with the lowest value was ranked 1.
Then, the sum of their rankings was used to
compute the final score. The rankings from the
testing and training phases are added together to
get the final score for each approach.

The values of the performance variables
estimated for the suggested approach and their
corresponding rankings for heating load are
shown in Table 2. These statistics show that
GWO-ANFIS, with a swarm size of 100, is the
most precise model for HL prediction. R* has the
most outstanding amount during the testing and
training sets when the population size is 100,
respectively, at 0.97905 and 0.9789. Additionally,
the swarm size of 100 has a lower RMSE value
than the others when considering the RMSE value
(0.1115 and 0.1093). The greatest RMSE, with
values of 0.16468 and 0.1557 in the training and
testing phases, respectively, and the lowest R’
associated with a population size of 400.

A sophisticated computer technique has been
created to forecast the heating demands of
residential structures. The approach is initially
trained utilizing the training dataset. Figure 4
clarifies that varied time steps and prediction
stages result in somewhat different predictions for
the model's findings. The overall pattern is still
there, and changing the time steps and prediction
stages will affect the prediction outcome. The
findings are more responsive to modifying time
steps than prediction steps. It is simple to verify
this finding using Table 2. In terms of the
prediction outcomes, a population size of 100 has
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the lowest RMSE (0.1115 and 0.1093) and highest
R2 (0.97905 and 0.9789, respectively) in training
and testing. According to the analysis, most of the

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 109-122

projected values strongly correlated with the

observed data in the testing set.

Table 2. The network results for the GWOANFIS having different swarm size

Swam Training dataset Testing dataset Scoring
Total Score Rank
size
RMSE R’ RMSE R’ Training Testing
50 0.12372 097413  0.11938 0.97477 9 9 9 9 36 2
100 0.1115  0.97905 0.1093 0.9789 10 10 10 10 40 1
150 0.16031 0.95617  0.15267 0.95839 4 4 5 5 18 6
200 0.1603 095618  0.15269 0.95838 5 5 4 4 18 6
250 0.16373 095424  0.15655 0.9562 2 2 1 1 6 9
300 0.15884 0.95699  0.15097 0.95933 7 7 7 7 28 4
350 0.16293  0.9547 0.15406 0.95761 3 3 3 3 12 8
400 0.16468 0.95369 0.1557 0.95669 1 1 2 2 6 9
450 0.13596 096868  0.13035 0.96984 8 8 8 8 32 3
500 0.15897 0.95692  0.15152 0.95903 6 6 6 6 24 5
_ GWOANFIS-Data Np50 s . ~SWOANTIS Dt 1100 i
B | s aseom 5 F [T ot )
IR e ]| = orossmomive ) N
a4 o oat 200 W
3 ® - \ B % .ﬁ
E - ’;' }.',i' ; vl: . :}ﬁ
fvee . a a d
i ® : il . 4
14 | L 1:‘-'-» g 04 2 ér -
v i .l
0.8 N 0.0 oW
4*- .p, ;
08t “J’ ‘ 08+ !!f'
! Zad ' i ( M " ) ‘ ) .....L_”-, L A
ol 0 0.4 02 o 02 a4 0.6 os 08 06 -04 02 0 D2 04 06 03
Measurad Measured
(a) GWOANFIS Np=50 (b) GWOANFIS Np=100
GWOANFIS-Data Np150 GWOANFIS-Data Np200
S IR DTS WoNGR CIOR iy g 1 : 2 & |
0.8 :::)lv:::-;isnlu) -C‘:":‘Nl' “E"j + 000003 | ): 2 a8 : :f.\:;,_f‘,:flr:'.,y.l."\ L.-:\:I:;:::«ri:‘ * 0.00004) | .;\ X > g
0.8 2.:.::::3 "7:«.\[:-.::..':4:: _i‘xc. + 0.00085) 35 :“i 2 | 0.6 | S::.D:,.‘:E .::\[1?:‘3‘::“, + 0.00110) | ? —g % '}
n4 :‘m 04 i ?W
i wE ¥ ¥
'_;: Q- ‘h .{r ‘ % 0 g %_, *’
a .02 2 " | \'E )2 | '
) A 4 ‘ . -
04 - < A - { a4 A b L4
LG ot s T v
06 "ﬁw f 06 | w}; P
0f ¢ wp 08! i
- | v
0.8 04 J4 .2 0 0.2 04 0.6 0.8 -1 08 96 D4 02 Q [ ) 04 08 08

Moasured

(c) GWOANFIS Np=150

115

Measurod

(d) GWOANFIS Np=200


http://aisesjournal.com/article-1-33-en.html

[ Downloaded from aisesjournal.com on 2025-11-04 ]

Mohamed Salem

FIS.
: GWOANFIS-Data Np250 )
8 T GWOANFIS-Train Data Np2s0 & ! i
o - Regrossion ine [y = 1.00010% + 0,00008) 4
GWOANFIS-Test st Np?SO -
06 Regression bow (y = 100560 + 0.00151) ; v
0.4 v
02 ¥ W
B v
€ o
°
e
o -n2
04
-0.6
08
o v
Ay VT
-1 48 08 04 02 0 n2 n4 08
Measured
(e) GWOANFIS Np=250
GWOANFISData Np3s0
1 v - v &
GWOANFIS-Tres Dl No350 v
08 Regrossion kne {y » (0 S0050°x + -0,00005) % o
GWOANFIS-Tast Data Np350 Yo |
06 Regression kne (y = 1 00TEx +-0,00002) )
04 R
- 02 4
2 )
= 0 o e ‘*
A2 A"
04 K —=
ol v S
28 v
-1 )V " i
1 04 06 A4 0.2 L] 02 04 (M La
Measured
(g) GWOANFIS Np=350
| s o s i I
GWOANFIE-Tran D Npas0 . v #
08 Rngrasson i (y = 1,00150%% + 0.00433) # P
GWOMNFIS-Test Data NpAG0 f_g Y
08 | —— Regmasion line (y = 0.99556"x + 0.00795) v 4 1

02 m = L

o

Preocisd

0.2 2

04 Pl
woy

L
08 v -
08
k v
08 <08 04 02 0 0z 04 0.6 0a
Measured

(i) GWOANFIS Np=450

Al in Sustainable Energy and Environment, Vol. 1, No. 1, 2025, 109-122

- GWOANFIS-Data Np300 )
T GWOANFIS-Trak Data Np300 ® & d
0.8 Regrassan §ne {y = 0,09025" + -0 00022) G
GWOANFIS- Test Data Np300 ; - b
0.6 " | —— Rogmssion Sne {y = 0.99783% + 0.00239) ! % ®
04 Ryt
02 f W
i . S
3 Pk
& 02 == g
04 L A ¥
o ;p v
L6
08
A

" A WP G— - " - ‘-
-1 08 -p6 -04 02 0 02 04 06 04

Measured
(f) GWOANFIS Np=300
3 GWOANFIS-Dats Npd00 ‘
~ GWOANFIS-Train Data Np300 b
08 mqmunmm:;:osmrx- Q00334) 3 ?
GWOANFIS-Tost Dako Npa00 : s W
061 | cegression ine iy = 1 00027"x « A 10355) 7 S
04 § -
02} CL 1
; e
of 5
2 AV ES
&0z 8-,
04 e 8 'Ii 3 ¥
P 1 W
o8 ¥ "/i 8 |
-1“0{,"4' v. s A A A A " A )
-1 A6 06 04 .02 o 0.2 04 06 na
Measured
(h) GWOANFIS Np=400
: GWOANFIS-Data Np500 %
T GWOANFIS-Tran Duta NG0O0 | y ’ d
08 Regression kne (y = 0.98581%x + 0.00018) ‘ &‘ P
GW/OANFIS- Tost Dusts Np&0 b g
06 —Rngmnlmu:w |au:rn~u,o:mn’g' % o

as W ¥
o

: #
s 0 Mg ¥
. o
e 2 e =i?

v a4 S50
A Bl ¥
0.6 b
08

v
Rt A i

-1 08 <06 -04 D2 ] 07 04 06 08
Measurad

(i) GWOANFIS Np=500

Figure 4: The precision of testing and training sets performance of GWOANFTIS in the best-fit optimization structure

The GWO-ANFIS training and testing errors
for HL prediction are shown in Figs. 5-9 as MAE
and MSE. These graphs show the accuracy
coefficients and testing and training errors for
each population size (100, 200, 300, 400, and
500). The results demonstrated that the suggested
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approach could, upon training, predict the test
data. Data mining applications’ studies revealed
that, for a range of machine learning algorithms
and neural networks, the kind of data significantly
impacted the training and prediction processes.
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Figure 9: Frequency and minimum value of errors
in GWOANFIS-500 best-fit structure

5. Discussion

The buildings HL and CL were primarily
forecasted using a variety of algorithms and
various pieces of data based on the literature
mentioned above. The CL and HL of buildings
may be indicated using these approaches, which
are divided into categories based on the datasets
they use. In the end, the strategies' efficacy was
evaluated using comparable data. The datasets
were separated into four groups for this
classification: actual calculations, simulated
(Energy plus), simulated (DeST), and simulated
(Ecotect). Each study's real-world calculation data
was unique.

The buildings HL and CL have been
forecasted by much research using different
machine learning, ANNSs, deep learning, hybrid
techniques, and ELM, as indicated in the literature
mentioned above. To enhance the forecasts of HL
and CL, researchers are increasingly considering
the possibility of mixing approaches, according to
an analysis of recent publications. The accuracy
coefficient and error are specific to the
methodologies used to forecast CL and HL.
Various statistical performance measures have
been used in multiple studies to assess each
algorithm's performance.
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The majority of research conducted to forecast
the buildings HL and CL based on various
parameters was evaluated in this study. The article
share is often listed as follows:

e A thorough analysis of works predicting

and simulating the HL and CL of residential

structures.

e It outlines a new ANFIS method called

GWO-ANFIS that combines it with Grey Wolf

Optimization (GWO) to model and predict HL

following the technological requirements.

A determination was made on the technique
indicated (GWO-ANFIS). The R>, MSE, RMSE,
and MAE variables derived from the findings of
the suggested approaches were contrasted with the
findings from previous articles. The database was
split into three sections: testing, validation, and
training operations. The training and testing
datasets received 80%—20% of the database. As
can be seen, the best forecasting model was the
GWO-ANFIS model, which had a population size
of 100 and the most incredible R* value for HL on
fresh test data (0.97905 and 0.9789). GWO-
training ANFIA's errors for HL prediction were at
their lowest in terms of MSE (0.012433), MAE
(0.088128), and RMSE (0.1115). The 400-person
population had the highest MSE (0.027132),
MAE (0.11945), and RMSE values, as well as the
lowest R* wvalues (0.95369 and 0.95669).
(0.16468). The population size of 50, which had
R2 values of 0.97413 and 0.97477, was the next-
best size for predicting the HL after that of 100.
By looking at the data, comparing the energy
forecast outcomes for buildings connected with
the suggested technique with other models used in
previous research for comparable data is possible.
The proposed approach may use all accessible
energy and real-world data, including water and
gas.

6. Conclusions

Several difficulties are associated with estimating,
managing, and reducing the buildings’ energy
usage, notably HL and CL. Most scientists
nowadays are searching for an enhanced model
with excellent prediction performance. This study
evaluated the effectiveness of an energy
forecasting model for residential structures. This
research developed a novel ANFIS model to
anticipate the HL of a residential structure using
hybrid models. The ANFIS and GWO models
were mainly combined in the suggested model.
Eight building technical factors (X1, X2,..., X8)
were used as input parameters, and HL was
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chosen as the model's output parameter. The HL
was anticipated using the dataset after training and
preserving the learned network. The findings
showed that the suggested ANFIS approach with a
100-person population size was the best approach
for forecasting building energy because it had the
highest R* (0.97905 and 0.9789) and the lowest
error in the forms of MSE (0.012433), RMSE
(0.1115), and MAE (0.088128) for predicting HL.
Notably, the suggested strategy works with all
accessible energies, including water and gas, as
well as real-world data.
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