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 Traditional energy performance analysis methods have become obsolete because of 

the development of novel swarm-based optimization methods. The research examines 

the potential of two hybrid approaches, notably genetic algorithm (GA) and grey wolf 

optimization (GWO), for enhancing the neural evaluation of cooling load (CL) in 

green buildings. To accomplish such an objective, preparing the necessary dataset 

considers eight CL-influencing elements, such as relative compactness, surface area, 

glazing area distribution, wall area, overall height, roof area, and orientation. A 

population-based analysis is conducted using the best-fitting architectures of every 

approach. According to the findings, using both GA and GWO algorithms increased 

neural network accuracy. The analysis outcomes indicate that the GA model was the 

most incredible ANFIS model. Significantly, the GA-ANFIS model had a greater R2  

amount of 0.98 and the lowest RMSE amount of 0.09 among the two models 

examined. The GWO-ANFIS approach achieved R2  amounts of 0.95 and RMSE 

amounts of 0.15, indicating that GA-ANFIS offers superior performance. 
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1. Introduction

Buildings currently utilize 32% of all final 

energy consumed globally, accounting for 33% of 

all greenhouse gas emissions, making them the 

world's most significant energy consumer [1]. 
Buildings seem to have far more considerable 

potential for energy savings than the 

transportation and industrial sectors and might 

approach 30–80 percent utilizing existing building 

technologies [2]. Compared to alternative service 

systems in buildings, the Heating, Ventilation, and 

Air-Conditioning (HVAC) system uses the most 

energy (approximately 50% in the US). It offers 

the most significant potential for energy savings 

(15–30% for commercial buildings) [3, 4]. 

Therefore, the HVAC system is the primary focus 

of current energy-saving strategies in building 

operations. For numerous building and energy 

management activities, like optimum control and 

fault detection and diagnosis (FDD) approaches 

[5-7], an accurate forecast of the short-term (less 

than one week) CL profile seems to be necessary. 

Mahmoud and Ben-Nakhi employed ANN to 

forecast the CL of the next day to maximize the 

efficiency of the system of HVAC thermal energy 

[6]. It has been demonstrated that optimal control 

strategies may enhance operational flexibility 

while reducing operating expenses. Lu et al. [7] 

utilized artificial intelligence to optimize HVAC 

system operations by predicting the buildings’ CL. 

Shan et al. [8] devised a viable approach for 

chiller control depending on predicting the CL. 

The method has been displayed to save 3% more 

energy than conventional procedures. Directly or 

indirectly, the cooling load has been utilized to 

indicate FDD. Earlier research utilized cooling 

load to diagnose and identify low delta-T 

syndrome in chilling systems [9], to lower air-

handling unit energy use [10], and to recognize 

unusual building-level energy use [9]. Predicting 
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building cooling loads seems to be essential for 

building demand-side management. Numerous 

investigations have examined the most 

economical demand response strategies (like load 

shifting), analyzing building-smart grid 

interactions [5]. Such analyses make the crucial 

premise that it is possible to employ accurate 

estimates of the profiles of the short-term cooling 

load of buildings. 

The two primary short cooling load prediction 

approaches are based on physical models and 

data. Building thermal behaviors are defined by 

physical-model-based techniques using a wide 

range of information about the building, its 

systems, and physical principles. Typically, the 

resulting models are commonly known as white-

box approaches. They could capture the real 

thermal answer of the structure to many 

influencing elements, including the indoor and 

outdoor environments. Nevertheless, it 

necessitates a substantial quantity of specific 

building information (such as data on the building 

envelope and the choice of building equipment). 

If certain physical principle assumptions are not 

achieved, the model's performance cannot be 

stable [10]. 

The alternative prediction techniques, or data-

driven techniques, primarily rely on operational 

building data to determine the association 

between the structure's cooling load and pertinent 

variables (outdoor temperature, relative humidity, 

and indoor occupancy). Black-box and grey-box 

methods [11, 12] are used to describe these 

models. The modeling process seems more 

effective and adaptable when using data-driven 

methods, particularly black-box methods. Modern 

data analytics approaches, containing machine 

learning and artificial intelligence, allow data-

driven methods to be very accurate and to find 

previously unknown but potentially essential 

connections. Two aspects primarily influence the 

data-driven models’ performance: the prediction 

methods used in the model creation and the inputs 

to the model used. Earlier studies demonstrated 

prediction techniques from artificial intelligence 

and machine learning, including artificial neural 

networks [13, 14] and support vector regression 

[15, 16], which performed exceptionally well in 

estimating buildings' energy consumption. 
Diverse research has also displayed that nonlinear 

approaches, such as autoregressive moving 

averages and multiple linear regression [17, 18], 

may provide more precise findings than linear 

methods. Prior studies concentrated mainly on the 

knowledge of engineering or basic statistical 

models to establish model input characteristics or 

to detect the model's inputs. Engineering 

knowledge demonstrates that the cooling demand 

of a building is strongly connected to the exterior 

temperature and internal occupancy. 

Consequently, the relative humidity, outdoor 

dry-bulb temperature, solar irradiance, and the 

indoor occupancy schedule were commonly used 

as the method’s inputs [19, 20]. When assessing 

the building’s thermal capacity, several 

researchers [17, 21] have employed historical data 

as model inputs. Employing original historical 

information as model inputs, including humidity 

and outdoor temperature at earlier time steps, is 

typically discouraged since it could significantly 

raise the input number of the model, making 

forecast methods more complex and costly. 
Feature derivation, which compresses crude data 

while maintaining information, may be utilized to 

create features as model inputs. Earlier research 

has identified three feature extraction approaches: 

statistical, engineering, and structural feature 

derivation [20-25]. Engineering attributes are built 

utilizing engineering expertise, such as data from 

the preceding hour as model inputs [21]. 
Summarizing statistics, such as the data's 

maximum, minimum, and mean amounts across a 

period, generate statistical features [20, 22-25]. 

Artificial intelligence (AI) methods are gaining 

popularity as a viable option to conventional 

methods, notably in the inverse simulating 

method. An artificial neural network (ANN) may 

be developed to adapt to a complex environment 

and could be employed to approximate any 

nonlinear system. ANNs obtain knowledge of the 

procedure of a complex system devoid of 

sophisticated rules and mathematical procedures 

[26]. Consequently, the ANNs unique 

characteristics, such as flexibility, nonlinearity, 

and the capacity to map arbitrary functions, make 

them appropriate for prediction functions among 

AI approaches such as expert systems, fuzzy 

logic, and genetic algorithms. Furthermore, ANN 

is an excellent candidate for occupancy data and 

equipment management in inherently noisy and 

incomplete buildings. In addition, ANN 

technology has been effectively used in various 

building services engineering domains [27-33]. In 

this article, the overall cooling load of residential 

buildings is simulated using two ANN models. 
The actual data from the air-conditioning system 

in the building and the hourly meteorological data 

acquired from Hong Kong Observatory are 

utilized as the input parameters of the models. In 
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contrast, the entire cooling load of the building is 

chosen as the output. 

2. Established database 

According to Tsanas and Xifara's [34] work, 

we employed the database from 

https://cml.ics.uci.edu/ in our experiment. The 

dataset contains eight input factors (overall height, 

relative compactness, surface area, roof area, wall 

area, glazing area, orientation, and glazing area 

distribution of a green building) and one response 

parameter (cooling load (CL) of the proposed 

structure). The input parameters are X1, X2, ..., 

and X8 (Table 1). A graphical illustration of the 

data preparation process is presented in Figure 1. 
The Ecotect software simulated and analyzed 768 

structures while considering 12 different building 

types, five distribution scenarios, four 

orientations, and four glazing zones [35]. 
Reference [34] discusses the major assumptions 

and aspects of the analyzed construction in depth. 
 

Table 1. Input variables 

 Input variables 

X1 Relative Compactness (-) 

X2 Surface Area (m2) 

X3 Wall Area (m2) 

X4 Roof Area (m2) 

X5 Overall height (m) 

X6 Orientation (-) 

X7 Glazing Area (m2) 

X8 Glazing Area Distribution 

 

 
 

Figure 1: Graphical view of data preparation 

3. Methodology 

Due to two variables, this study used the GA 

and GWO models to develop the ANFIS model 

for calculating building cooling loads during the 

early design phase. First, they are the most 

effective and widely utilized strategies [36]. 
Second, they are possible models for solving 

nonlinear issues influenced by several factors. 
General building information is in detail in section 

2 as inputs for the models used in this 

investigation. In this research, building cooling 

loads are the outputs of such models. The 

connection between the inputs and the output will 

be established using the GA-ANFIS and GWO-

ANFIS models. 

3.1. Adaptive Network Based Fuzzy Inference 

System (ANFIS): 

ANFIS is a technique of artificial intelligence 

that handles very complicated and nonlinear 

problems. ANFIS efficiently resoles complicated 

and nonlinear issues in a single framework 

because it integrates with FIS and ANN. 

Accordingly, the ANFIS architecture employed in 

the investigation contains five layers and two 

inputs. The Takagi-Sugeno fuzzy system was used 

as FIS in this structure, it was determined that the 

FIS has two inputs (x1 and x2) and one output (F) 

to describe the ANFIS procedure. Generally, the 

fuzzy rules are expressed as follows [36]: 

Rule 1: 

If x1is I1 and x2is J1 and etc. ;   
then  
F1 = a1x1 + b1x2 + ⋯+ r1  

(1) 

 

Rule 2: 

If x2is I2 and x2is J2 and etc. ;   
then 

F2 = a2x1 + b2x2 + ⋯+ r2  
(2) 

 

Where x2 and x1 are input variables. a2 ; b2 ; 

r2; a1; b1; r1 are the output parameters. I2, I1, J2, 

J` are the inputs’ MFs (x2 and x1 ). The ANFIS 

setup is based on a feedforward network including 

five levels and multiple functions. The function of 

every layer is described using equations (8)-(13). 
The membership connection between this layer’s 

output and input functions of and input nodes in 

layer one is defined as: 
 

F1.i = μAi(I),      i = 1,2 (3) 
 

F1.i = μBi(J),      i = 1,2 (4) 
 

The rule nodes or second layer’s output is the 

outcome of the input signal, also referred to as: 

F2.i = Wi = μi(I)μi(J),      i = 1,2 (5) 
 

Where μi(J) and μi(I) represents the MFs. In 3
th
 

layer, or the normalized layer, the function of 

weight is normalized as follows: 
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F3.i = 𝑤 =
𝑤𝑖

𝑤1 + 𝑤2

,      i = 1,2 (6) 

 

Sugeno fuzzy rule's function is multiplied with the 

preceding layer’s output in 4
th
 layer or subsequent 

nodes that is the defuzzy layer: 

F4.i = 𝑤̅𝑖𝑓𝑖 = 𝑤𝑖(𝑎1𝑥 + 𝑏𝑖𝑥2 + ⋯+ 𝑟𝑖),   i = 1,2  (7) 
 

All the outputs from the rules in the prior layer is 

calculated in a single-node output node (layer 5). 

F5.i = ∑𝑤̅𝑖𝑓𝑖

𝑛

𝑖=1

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖

 (8) 

 

3.2. Genetic Algorithm (GA) 

A standard stochastic method for optimization, 

genetic algorithms (GA), is based on genetics and 

natural selection concepts. Since it applies 

probabilistic transition rules instead of 

deterministic ones, the GA seems capable of 

exploring expansive solution spaces. GA consists 

of three fundamental steps: (I) initialization of the 

population, (II) GA operators, and (III) evaluation 

[37]. 

 

I. Initialization of the population: The 

primary or initial population, including 

solutions from the initial candidate, is 

randomly generated. In GA, a set of 

variables presents each solution, referred 

to as a series. Such variables could be 

actual or binary in nature. The initial 

population of solutions should meet every 

limitation or criterion of the optimization 

issue. 

II. GA operators 
1. Selection: Comparable to Darwin's theory 

of natural selection, the selection operator 

selects persons or solutions, also known 

as parents, with a greater probability of 

survival. These are the solutions that 

exhibit excellent performance and high 

fitness levels. There are several selection 

methods, such as "Tournament," "Roulette 

Wheel," and "Elitist." The investigation 

combines Tournament and Elitist 

approaches. Following ranking all 

solutions based on their fitness values, a 

few solutions are passed immediately as 

elite solutions to the subsequent 

generation. At the same time, other people 

(randomly formed) will compete together. 

2. Crossover: The operator switches two 

selected individuals to construct new ones 

for the next generation. The method of 

GA employs the distributed technique, in 

which a randomized string of double 

values is generated initially. Then, the 

genes filled out by one are picked out 

from the first parent, and the other genes 

are picked out from the other. 

3. Mutation: The operator randomizes the 

information included in chromosomes or 

series. Genes often undergo mutations 

with a reasonable possibility of becoming 

new genes. Through mutation, it is 

feasible to alter the population's diversity 

and increase the capacity of the search 

plan to exclude the algorithm from 

converging to local optima. 

III. Evaluation: The operator is concerned 

with individualization. Typically, an 

optimization issue’s objective function is 

the fitness function.  

 

3.3. Grey Wolf Optimization (GWO): 

The GWO [38] seems to be another meta-

heuristic algorithm built on grey wolf hunting 

treatment and natural social hierarchy [39]. Grey 

wolves live in packs that follow an exacting social 

dominating structure and mimic the headship 

hierarchy [40].  
Grey wolves engage in different behaviors, 

notably hunting their prey. Figure 2 depicts the 

social dominating hierarchy of grey wolves, 

which consists of four forms: omega (𝜔) delta (𝛿), 

beta (𝛽), and alpha (𝛼). The 𝛼-wolves are the top-

ranking decision-makers in the social order, and 

the other wolves obey them [41]. The 𝛽 -wolves 

assist and organize the leaders. The 𝛿 -Wolves’ 

position at the next level while obeying the 𝛼- and 

𝛽-wolves. The 𝜔-wolves must eventually submit 

to them all [40]. The GWO approach was created 

as a mathematical model for grey wolves. It uses 

an optimization procedure, which is comparable 

to other algorithms via the collecting of random 

solutions [42]. Particularly𝛼,𝛽, 𝛿, and 𝜔 represent 

the ideal, second optimal, and third optimal 

solutions, accordingly [43].  

 [
 D

ow
nl

oa
de

d 
fr

om
 a

is
es

jo
ur

na
l.c

om
 o

n 
20

25
-1

1-
04

 ]
 

                             4 / 14

http://aisesjournal.com/article-1-32-en.html


Imen Ben Salem AI in Sustainable Energy and Environment, Vol. 1, No. 2, 131-144 

 

135 

 

 
Figure 2: Grey wolves’ social hierarchy 

 

(1) Prey encircling  

The initial hunting stage involves the grey 

wolves harassing and encircling their prey. The 

value of the D parameter, which quantifies the 

space between the grey wolf and the prey, appears 

as bellows: 
 

D = |C⃗ ∙ X⃗⃗ P(t) − X⃗⃗ (t)| (9) 
 

When t denotes the current repetition, 𝑋  and 

𝑋 𝑃  signify the grey wolf and prey location 

vectors, correspondingly, and the coefficient’s 

vector is determined by 𝐶  is expressed as bellow: 
 

C⃗ = 2 ∙ r 1 (10) 

 

𝑟1 stand as an accidental vector with amounts 

between 0 and 1. The location of prey could be 

expressed as bellow: 
 

X⃗⃗ (t + 1) = X⃗⃗ P(t) − A⃗⃗ ∙ D⃗⃗  (11) 

 

The following formula is employed to 

calculate the coefficient 𝐴⃗⃗  ⃗'s value: 
 

A⃗⃗ = 2a ∙ r2 − a (12) 

 

Where a is a variable which is reducing linearly, 

and 𝑟2 is a vector randomly chosen between [0, 1] 

as 𝑟1. 

 

(1) Hunting 
Since 𝛼  β and 𝛿  each contain compressive 

knowledge regarding the prey's position; they 

serve as the respective guides for the hunting 

behavior following the phase of encircling the 

prey. 

D⃗⃗ α = |C⃗ 1 ∙ X⃗⃗ α − X⃗⃗ |, D⃗⃗ β = |C⃗ 2 ∙ X⃗⃗ β − X⃗⃗ |, D⃗⃗ δ =

|C⃗ 3 ∙ X⃗⃗ δ − X⃗⃗ |  
 

(13) 

 

X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1 ∙ D⃗⃗ , X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2 ∙ D⃗⃗ , X⃗⃗ 3 = X⃗⃗ δ −

A⃗⃗ 3 ∙ D⃗⃗   
(14) 

 

Where 𝑋 1 , 𝑋 2 , and 𝑋 3  signify the position 

vectors of 𝛼, 𝛽 and𝛿. Coefficients𝐴 1, 𝐴 2, 𝐴 3 and 

𝐶 1, 𝐶 2 , and 𝐶 3  could be calculated utilizing (11) 

and (12). The following could be used to update a 

grey wolf's position in the search area: 

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (15) 

 

Other wolves' positions are updated randomly 

based on the prey's position. 

(1) Attacking prey (exploitation) 
Once the prey has stopped moving, the hunt is 

ended.  𝐴   is reduced linearly from 2 to 0 in 

mathematics. When |𝐴 | < 1 and  |𝐶 | < 1 , the 

exploration trend occurs. Meanwhile, the wolves 

are attacking the prey. 

(2) Prey searching (exploration) 
Grey wolves pursue and track their prey. In the 

GWO algorithm, the phase of pursuing prey is 

called exploration [44]. In such a process, the 

parameters𝛼, 𝛽, and 𝛿 have the duty of assisting. 

If |𝐴 | > 1 , it indicates that grey wolves scatter 

and seek prey in various directions. They 

converge to assault [41] after discovering it. The 

coefficient 𝐶  offers an accidental weight for the 

prey, whereas |𝐶 | > 1  promotes exploration 

during discovery. The natural obstacles to grey 

wolf hunting are also modeled by 𝐶  [45]. 

4. Results and Discussion: 

Tables 2 and 3 highlight the forecasts 

performance of the two ANFIS models, 

comprising the GA-ANFIS and GWO-ANFIS 

methods, while applying the test data of building 

cooling loads. The fact that each model computes 

in less than 0.5 seconds demonstrates how 

effectively they predict building cooling loads. 
These tables’ performance findings show that the 

GA-ANFIS model consistently outperforms the 

GWO-ANFIS model regarding prediction 

accuracy. In particular, the GA-ANFIS model's 

accuracy was 0.98 in R2  and 0.09 in RMSE, 

compared to 0.95 and 0.15 for the GWO-ANFIS 

model. 

 

4.1. Accuracy Indicators 

Statistical measurements such as the linear 

correlation coefficient (R2 ) and root-mean-square 
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error (RMSE) are employed to assess the 

prediction effectiveness of ANFIS models. The 

range for RMSE and R2  values is between 0 and 

1. Conversely, an ANFIS model indicates 

improved performance with a higher R2  and a 

lower RMSE. In this investigation, the 

performance of ANFIS models was evaluated 

utilizing the open-source WEKA data mining tool. 
Throughout the training and assessment 

processes, its parameters have defaulted to allow a 

proper comparison of prediction performance 

across ANFIS models. The correlation coefficient 

and root means squared error (RMSE) are two 

metrics (as described in Eqs. (16) and (17)) that 

are used to assess prediction performance (R2 ). 

2

1

1
RMSE [( )]

observed predicted

U

i i

i

S S
U 

   (16) 

 

2

2 1

1

2

( )

( )

-

1-

-

predicted observed

observed

U

i i

i

U

observedi

i

S S

R

S S










 (17) 

 

Where Si observed, and Si anticipated representing the 

green residential building's actual and projected 

CL values, respectively. The variables U and 

𝑠𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑   represent the total data and the mean 

of the actual CL amounts. Machine-learning 

approaches were developed in the Weka software 

environment using the enhanced data set. The 

outcomes of this process are offered in the 

following subsection. 

 

4.2. Incorporated Optimizers and FIS  

The GA and GWO were presented with the 

calculated ANFIS's mathematical equation as the 

primary problem. In this part, we will evaluate 

how the size of the train and test datasets was 

selected for the cross-validation process. The 

cross-validation process involves selecting 

random samples from the initial training and 

validation sets (80%) to generate a new training 

and validation set (20%) while leaving the testing 

set (20%) intact for utilization in analyzing the 

prediction performance of the various models. 
Population sizes 50, 100, 150, 200, 250, 300, 350, 

400, 450, and 500 are selected for the new 

training and validation sets. Every network was 

created between 1000 repeats to provide sufficient 

possibility for minimizing the error. The described 

technique yields ten convergence curves, 

represented in Figure 3. The process of choosing 

the predictor variables and building the model 

remains the same; however, the new train and test 

sets are utilized separately to substitute the initial 

train and test set. Figure 3 displays the prediction 

effectiveness of models depending on MSE 

amount employing training set with different 

sample sizes. The figure indicates that the GA-

ANFIS technique results the most precise 

outcomes due to its low MSE value.  
 

 
(a) 

 

 
(b) 

 

Figure 3: Variation of mean squared error versus 

repetitions for (a) GAANFIS, (b) GWOANFIS 

 

Tables 2 and 3 demonstrate the essential 

metrics of the GA-ANFIS and GWO-ANFIS 

models in forecasting CLs in buildings utilizing 

train and test stages using ten population sizes. 
Such models yielded consistent results, with R2  

amounts varying from 0.95 ~0.98 and RMSE 

amounts from 0.09 ~0.15. With R2 of (0.98422 

and 0.98339) and RMSE of (0.09056 and 

0.09312) in the train and test phases, the optimal 

swarm size for GA-ANFIS is 350. With a 

population size of 400, the GWO-ANFIS 
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approach seems to have the greatest R2  (0.95148, 

0.95191) and the smallest RMSE (0.15745, 

0.15718) in the train and test stages. The findings 

indicate that the GA-ANFIS approach performs 

more effectively and makes more precise 

predictions when the R2 and RMSE amounts are 

greater. 

 

 

 
 

Table 2. The outcomes of the GAANFIS algorithm with various population sizes 
 

Swam 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 0.10826 0.97736 0.10987 0.9768 8 8 8 8 32 3 

100 0.11283 0.97538 0.11422 0.9749 6 6 6 6 24 4 

150 0.11449 0.97465 0.12023 0.97215 5 5 4 4 18 7 

200 0.09728 0.98176 0.09832 0.98147 9 9 9 9 36 2 

250 0.11486 0.97448 0.11353 0.97521 4 4 7 7 22 6 

300 0.12214 0.97109 0.12777 0.96849 2 2 2 2 8 9 

350 0.09056 0.98422 0.09312 0.98339 10 10 10 10 40 1 

400 0.11112 0.97613 0.11565 0.97426 7 7 5 5 24 4 

450 0.11618 0.97388 0.12077 0.9719 3 3 3 3 12 8 

500 0.12778 0.96832 0.13472 0.96491 1 1 1 1 4 10 

 
Table 3. The outcomes of the GWOANFIS algorithm with various population sizes 

 

Swam 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 0.1721 0.94174 0.16386 0.94762 9 9 9 9 36 2 

100 0.17457 0.94 0.16469 0.94708 7 7 8 8 30 3 

150 0.17395 0.94044 0.17312 0.94135 8 8 5 5 26 4 

200 0.17739 0.93798 0.16682 0.94566 5 5 6 6 22 6 

250 0.22984 0.89344 0.21392 0.90893 1 1 1 1 4 10 

300 0.18165 0.93487 0.19128 0.9279 4 4 3 3 14 7 

350 0.22094 0.90198 0.21032 0.91211 2 2 2 2 8 9 

400 0.15745 0.95148 0.15718 0.95191 10 10 10 10 40 1 

450 0.17568 0.93921 0.16567 0.94642 6 6 7 7 26 4 

500 0.18771 0.93028 0.18336 0.93395 3 3 4 4 14 7 

 

The actual and expected building CLs scatter 

plot generated from two ANFIS methods are 

displayed in Figures 4 and 5. Such figures suggest 

that the GA-ANFIS model had the most excellent 

correlation between projected and actual cooling 

load values. This is consistent with the model 

performance outcomes in Tables 2 and 3. 

In this regard, as shown by the training R2  

values of 0.98422 and 0.95148the, GA-ANFIS 

achieved more precise prediction for unseen 

situations. The GA-mean ANFIS's absolute error 

was lowest at RMSE of 0.09056 and 0.15745. 
Additionally, the testing R2  values (0.98339 and 

0.95191) indicated greater consistency for the 

GA-ANFIS products. 
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(a) GAANFIS train Np=50 

 

(b) GAANFIS train Np=100 
 

  
(c) GAANFIS train Np=150 

 

(d) GAANFIS train Np=200 
 

  
(e) GAANFIS train Np=250 

 

(f) GAANFIS train Np=300 
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(g) GAANFIS train Np=350 

 

(h) GAANFIS train Np=400 
 

  
(i) GAANFIS train Np=450 (j) GAANFIS train Np=500 

  

Figure 4: The training dataset accuracy of GAANFIS in the best fit structure of optimization 

 

  
(a) GAANFIS test Np=50 

 

(b) GAANFIS test Np=100 
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(c) GAANFIS test Np=150 

 

(d) GAANFIS test Np=200 
 

  
(e) GAANFIS test Np=250 

 

(f) GAANFIS test Np=300 
 

  
(g) GAANFIS test Np=350 

 

(h) GAANFIS test Np=400 
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(i) GAANFIS test Np=450 (j) GAANFIS test Np=500 

  

Figure 5: The testing dataset accuracy of GAANFIS in the best-fit structure of optimization 

 

The section evaluates the accuracy of the 

created methods by comparing the expected and 

absolute CL values. Two error criteria (MAE and 

MSE) were determined to quantify the 

performance error for the testing and training 

specimens. Figures 6 and 7 depict a graphical 

comparison of the CL's initial and expected 

patterns (for the training dataset). As can be 

noticed, the CL pattern was accurately 

approximated by both models. The MAEs 

(0.067031 and 0.11596) and computed training 

MSEs (0.0082062 and 0.025336 for the GA-

ANFIS and GWO-ANFIS, correspondingly) 

demonstrate that the GA-ANFIS algorithm 

developed a more accurate understanding of the 

link between the CL and effective variables. The 

acquired R2  values (0.98422 and 0.95148), which 

demonstrate a stronger correlation between the 

GA-ANFIS training outputs and real CLs, could 

be used to support the conclusion. 

 

 
(a) Train database 

 

 
(b) Test database 

 

Figure 6: Minimum values of errors and 

frequency in GAANFIS best fit structure 

 

 

 
(a) Train database 

 

 
(b) Test database 

 

Figure 6: Minimum values of errors and 

frequency in GWOANFIS best-fit structure 

 [
 D

ow
nl

oa
de

d 
fr

om
 a

is
es

jo
ur

na
l.c

om
 o

n 
20

25
-1

1-
04

 ]
 

                            11 / 14

http://aisesjournal.com/article-1-32-en.html


Imen Ben Salem AI in Sustainable Energy and Environment, Vol. 1, No. 2, 131-144 

 

142 

 

5. Discussion 

The ANFIS models have the benefit of being 

able to learn and model effectively nonlinear and 

complicated relationships, including the 

prediction of a building's cooling load. The 

ANFIS models possess a high potential for 

generalization (e.g., CLs in buildings) after 

learning the link between the inputs and the 

outputs. Two ANFIS models may have been 

trained and extensively assessed to estimate 

building cooling loads at the beginning of the 

design phase. It was verified that the GA-ANFIS 

approach is the most proposed precise ANFIS 

model. Between such two models, the GA-ANFIS 

model had the best correlation between actual and 

modeled values of CLs. The suggested ANFIS 

models show excellent agreement with the entire 

building energy simulation that is physics-based. 

Additionally, the computing time for ANFIS 

models is only a few seconds, whereas physics-

based energy simulations for entire buildings can 

take hours or even a whole day to run. 
Consequently, the model bagging ANFIS method 

could be regarded as an alternate tool in the initial 

stages of design to increase the buildings’ energy 

efficiency via a more excellent knowledge of the 

links between building energy performance and 

building features. 

6. Conclusions 

Scientists and professionals are embracing 

green building practices due to the popularity of 

energy-efficient building designs. Predicting 

building energy usage early in the design phase is 

crucial to providing architects with different 

design options. The research suggests a different 

strategy relying on ANFIS methods to predict 

building cooling loads. The forecast performance 

of ensemble and single ANFIS methods was 

generated and evaluated in this study using a 

dataset of 243 buildings. The analysis outcomes 

demonstrate that the GA model was the optimum 

ANFIS model. Significantly, the GA-ANFIS 

model had the greatest R2 amount of 0.98 and the 

lowest RMSE amount of 0.09 among the two 

models examined in this research. The GWO-

ANFIS approach achieved R2  amounts of 0.95 

and RMSE amounts of 0.15, suggesting that GA-

ANFIS provides superior performance. The 

research explored using ML models for estimating 

building cooling loads as one of its contributions. 
The outcomes of this research offer designers a 

different approach to gaining accessibility to links 

between building cooling loads and building 

attributes to improve building energy efficiency. 
Future research might broaden the application of 

ANFIS models to include calibrating a building 

energy model to retrofit existing structures. Their 

parameter values determine the performance of 

ANFIS models. Determining the ideal values for 

these variables is a demanding and potential area 

of future researches that might modify the 

predictive accuracy of the ANFIS model.  
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