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amounts of 0.15, indicating that GA-ANFIS offers superior performance.

1. Introduction

Buildings currently utilize 32% of all final
energy consumed globally, accounting for 33% of
all greenhouse gas emissions, making them the
world's most significant energy consumer [1].
Buildings seem to have far more considerable
potential for energy savings than the
transportation and industrial sectors and might
approach 30-80 percent utilizing existing building
technologies [2]. Compared to alternative service
systems in buildings, the Heating, Ventilation, and
Air-Conditioning (HVAC) system uses the most
energy (approximately 50% in the US). It offers
the most significant potential for energy savings
(15-30% for commercial buildings) [3, 4].
Therefore, the HVAC system is the primary focus
of current energy-saving strategies in building
operations. For numerous building and energy
management activities, like optimum control and
fault detection and diagnosis (FDD) approaches
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[5-7], an accurate forecast of the short-term (less
than one week) CL profile seems to be necessary.

Mahmoud and Ben-Nakhi employed ANN to
forecast the CL of the next day to maximize the
efficiency of the system of HVAC thermal energy
[6]. It has been demonstrated that optimal control
strategies may enhance operational flexibility
while reducing operating expenses. Lu et al. [7]
utilized artificial intelligence to optimize HVAC
system operations by predicting the buildings’ CL.
Shan et al. [8] devised a viable approach for
chiller control depending on predicting the CL.
The method has been displayed to save 3% more
energy than conventional procedures. Directly or
indirectly, the cooling load has been utilized to
indicate FDD. Earlier research utilized cooling
load to diagnose and identify low delta-T
syndrome in chilling systems [9], to lower air-
handling unit energy use [10], and to recognize
unusual building-level energy use [9]. Predicting
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building cooling loads seems to be essential for
building demand-side management. Numerous
investigations have examined the most
economical demand response strategies (like load
shifting),  analyzing  building-smart  grid
interactions [5]. Such analyses make the crucial
premise that it is possible to employ accurate
estimates of the profiles of the short-term cooling
load of buildings.

The two primary short cooling load prediction
approaches are based on physical models and
data. Building thermal behaviors are defined by
physical-model-based techniques using a wide
range of information about the building, its
systems, and physical principles. Typically, the
resulting models are commonly known as white-
box approaches. They could capture the real
thermal answer of the structure to many
influencing elements, including the indoor and
outdoor environments. Nevertheless, it
necessitates a substantial quantity of specific
building information (such as data on the building
envelope and the choice of building equipment).
If certain physical principle assumptions are not
achieved, the model's performance cannot be
stable [10].

The alternative prediction techniques, or data-
driven techniques, primarily rely on operational
building data to determine the association
between the structure's cooling load and pertinent
variables (outdoor temperature, relative humidity,
and indoor occupancy). Black-box and grey-box
methods [11, 12] are used to describe these
models. The modeling process seems more
effective and adaptable when using data-driven
methods, particularly black-box methods. Modern
data analytics approaches, containing machine
learning and artificial intelligence, allow data-
driven methods to be very accurate and to find
previously unknown but potentially essential
connections. Two aspects primarily influence the
data-driven models’ performance: the prediction
methods used in the model creation and the inputs
to the model used. Earlier studies demonstrated
prediction techniques from artificial intelligence
and machine learning, including artificial neural
networks [13, 14] and support vector regression
[15, 16], which performed exceptionally well in
estimating  buildings' energy consumption.
Diverse research has also displayed that nonlinear
approaches, such as autoregressive moving
averages and multiple linear regression [17, 18],
may provide more precise findings than linear
methods. Prior studies concentrated mainly on the
knowledge of engineering or basic statistical
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models to establish model input characteristics or
to detect the model's inputs. Engineering
knowledge demonstrates that the cooling demand
of a building is strongly connected to the exterior
temperature and internal occupancy.
Consequently, the relative humidity, outdoor
dry-bulb temperature, solar irradiance, and the
indoor occupancy schedule were commonly used
as the method’s inputs [19, 20]. When assessing
the building’s thermal capacity, several
researchers [17, 21] have employed historical data
as model inputs. Employing original historical
information as model inputs, including humidity
and outdoor temperature at earlier time steps, is
typically discouraged since it could significantly
raise the input number of the model, making
forecast methods more complex and costly.
Feature derivation, which compresses crude data
while maintaining information, may be utilized to
create features as model inputs. Earlier research
has identified three feature extraction approaches:
statistical, engineering, and structural feature
derivation [20-25]. Engineering attributes are built
utilizing engineering expertise, such as data from
the preceding hour as model inputs [21].
Summarizing statistics, such as the data's
maximum, minimum, and mean amounts across a
period, generate statistical features [20, 22-25].
Artificial intelligence (Al) methods are gaining
popularity as a viable option to conventional
methods, notably in the inverse simulating
method. An artificial neural network (ANN) may
be developed to adapt to a complex environment
and could be employed to approximate any
nonlinear system. ANNs obtain knowledge of the
procedure of a complex system devoid of
sophisticated rules and mathematical procedures
[26]. Consequently, the ANNs unique
characteristics, such as flexibility, nonlinearity,
and the capacity to map arbitrary functions, make
them appropriate for prediction functions among
Al approaches such as expert systems, fuzzy
logic, and genetic algorithms. Furthermore, ANN
is an excellent candidate for occupancy data and
equipment management in inherently noisy and
incomplete  buildings. In addition, ANN
technology has been effectively used in various
building services engineering domains [27-33]. In
this article, the overall cooling load of residential
buildings is simulated using two ANN models.
The actual data from the air-conditioning system
in the building and the hourly meteorological data
acquired from Hong Kong Observatory are
utilized as the input parameters of the models. In
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contrast, the entire cooling load of the building is
chosen as the output.

2. Established database

According to Tsanas and Xifara's [34] work,
we employed the database from
https://cml.ics.uci.edu/ in our experiment. The
dataset contains eight input factors (overall height,
relative compactness, surface area, roof area, wall
area, glazing area, orientation, and glazing area
distribution of a green building) and one response
parameter (cooling load (CL) of the proposed
structure). The input parameters are X1, X2, ...,
and X8 (Table 1). A graphical illustration of the
data preparation process is presented in Figure 1.
The Ecotect software simulated and analyzed 768
structures while considering 12 different building
types, five distribution scenarios, four
orientations, and four glazing zones [35].
Reference [34] discusses the major assumptions
and aspects of the analyzed construction in depth.

Table 1. Input variables

Input variables

X1 Relative Compactness (-)
X2 Surface Area (m?)

X3 Wall Area (m?)

X4 Roof Area (m?)

X5 Overall height (m)

X6 Orientation (-)

X7 Glazing Area (m?)
X8 Glazing Area Distribution

[ H P
! ‘et i ( ™esmgles )

Figure 1: Graphical view of data preparation

3. Methodology
Due to two variables, this study used the GA
and GWO models to develop the ANFIS model

for calculating building cooling loads during the
early design phase. First, they are the most
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effective and widely utilized strategies [36].
Second, they are possible models for solving
nonlinear issues influenced by several factors.
General building information is in detail in section
2 as inputs for the models used in this
investigation. In this research, building cooling
loads are the outputs of such models. The
connection between the inputs and the output will
be established using the GA-ANFIS and GWO-
ANFIS models.

3.1. Adaptive Network Based Fuzzy Inference
System (ANFIS):

ANFIS is a technique of artificial intelligence
that handles very complicated and nonlinear
problems. ANFIS efficiently resoles complicated
and nonlinear issues in a single framework
because it integrates with FIS and ANN.
Accordingly, the ANFIS architecture employed in
the investigation contains five layers and two
inputs. The Takagi-Sugeno fuzzy system was used
as FIS in this structure, it was determined that the
FIS has two inputs (x1 and x2) and one output (F)
to describe the ANFIS procedure. Generally, the
fuzzy rules are expressed as follows [36]:

Rule 1:

If x,is I; and x,is J; and etc.;

then (8]
Fi =a;xy +bixy + - +14

Rule 2:

If x,is I, and x,is ], and etc.;

then 2
F, =a,x; + byxy, + 471,

Where x, and x; are input variables. a,; by ;
ry; aq; by; rq are the output parameters. I, 11, ],
] are the inputs’ MFs (x, and x;). The ANFIS
setup is based on a feedforward network including
five levels and multiple functions. The function of
every layer is described using equations (8)-(13).
The membership connection between this layer’s
output and input functions of and input nodes in
layer one is defined as:

Fii=ma(), 1i=12 (3)
Fl.i = UBi(D: i= 152 (4)

The rule nodes or second layer’s output is the
outcome of the input signal, also referred to as:

Foi =W =uw(Ow@), i=12 (5)

Where 1;(J) and p;(I) represents the MFs. In 3™
layer, or the normalized layer, the function of
weight is normalized as follows:
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Foi=w=— i =12
3.i_W_W1+W2! 1=1, (6)

Sugeno fuzzy rule's function is multiplied with the
preceding layer’s output in 4™ layer or subsequent
nodes that is the defuzzy layer:

F4-.i = Wl.fl = Wl-(alx + bl-xz + o+ ri)r i=12 (7)

All the outputs from the rules in the prior layer is
calculated in a single-node output node (layer 5).

o=y wify = S @

3.2. Genetic Algorithm (GA)

A standard stochastic method for optimization,
genetic algorithms (GA), is based on genetics and
natural selection concepts. Since it applies
probabilistic  transition rules instead of
deterministic ones, the GA seems capable of
exploring expansive solution spaces. GA consists
of three fundamental steps: (I) initialization of the
population, (II) GA operators, and (III) evaluation
[37].

I.  Initialization of the population: The
primary or initial population, including
solutions from the initial candidate, is
randomly generated. In GA, a set of
variables presents each solution, referred
to as a series. Such variables could be
actual or binary in nature. The initial
population of solutions should meet every
limitation or criterion of the optimization
issue.

Il.  GA operators

1. Selection: Comparable to Darwin's theory
of natural selection, the selection operator
selects persons or solutions, also known
as parents, with a greater probability of
survival. These are the solutions that
exhibit excellent performance and high
fitness levels. There are several selection
methods, such as "Tournament," "Roulette
Wheel," and "Elitist." The investigation
combines Tournament and  Elitist
approaches.  Following ranking all
solutions based on their fitness values, a
few solutions are passed immediately as
elite  solutions to the subsequent
generation. At the same time, other people
(randomly formed) will compete together.
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2. Crossover: The operator switches two
selected individuals to construct new ones
for the next generation. The method of
GA employs the distributed technique, in
which a randomized string of double
values is generated initially. Then, the
genes filled out by one are picked out
from the first parent, and the other genes
are picked out from the other.

3. Mutation: The operator randomizes the
information included in chromosomes or
series. Genes often undergo mutations
with a reasonable possibility of becoming
new genes. Through mutation, it is
feasible to alter the population's diversity
and increase the capacity of the search
plan to exclude the algorithm from
converging to local optima.

Ill.  Evaluation: The operator is concerned
with individualization. Typically, an
optimization issue’s objective function is
the fitness function.

3.3. Grey Wolf Optimization (GWO):

The GWO [38] seems to be another meta-
heuristic algorithm built on grey wolf hunting
treatment and natural social hierarchy [39]. Grey
wolves live in packs that follow an exacting social
dominating structure and mimic the headship
hierarchy [40].

Grey wolves engage in different behaviors,
notably hunting their prey. Figure 2 depicts the
social dominating hierarchy of grey wolves,
which consists of four forms: omega (w) delta (8),
beta (), and alpha (a). The a-wolves are the top-
ranking decision-makers in the social order, and
the other wolves obey them [41]. The § -wolves
assist and organize the leaders. The §-Wolves’
position at the next level while obeying the a- and
B-wolves. The w-wolves must eventually submit
to them all [40]. The GWO approach was created
as a mathematical model for grey wolves. It uses
an optimization procedure, which is comparable
to other algorithms via the collecting of random
solutions [42]. Particularlya,f3, §, and w represent
the ideal, second optimal, and third optimal
solutions, accordingly [43].
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Figure 2: Grey wolves’ social hierarchy

(1) Prey encircling

The initial hunting stage involves the grey
wolves harassing and encircling their prey. The
value of the D parameter, which quantifies the
space between the grey wolf and the prey, appears
as bellows:

D =|C-Xp(t) = X(D)| 9)

When ¢ denotes the current repetition, X and
)?p signify the grey wolf and prey location
vectors, correspondingly, and the coefficient’s
vector is determined by Cis expressed as bellow:

C=2'1%, (10)

r; stand as an accidental vector with amounts
between 0 and 1. The location of prey could be
expressed as bellow:

X(t+1) =Xp(t) —A-D (11)

The following formula is employed to
calculate the coefficient A's value:

K=Za-r2—a (12)

Where a is a variable which is reducing linearly,
and r, is a vector randomly chosen between [0, 1]
as 1.

(1) Hunting

Since @ B and § each contain compressive
knowledge regarding the prey's position; they
serve as the respective guides for the hunting
behavior following the phase of encircling the

prey.

BO( = |61 'ia _§|’_D)B b |62 YB —Y|,BS =

S, %5 -] a3
R R A A A T
K3'B
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Where )?1, )?2 , and )?3 signify the position
vectors of a, f andé. Coefﬁcientsffl, sz, fT3 and
Cy., C,, and C5 could be calculated utilizing (11)

and (12). The following could be used to update a
grey wolf's position in the search area:

X+ X+ X (15)

Xt+1 = 3

Other wolves' positions are updated randomly
based on the prey's position.

(1) Attacking prey (exploitation)

Once the prey has stopped moving, the hunt is
ended. A is reduced linearly from 2 to 0 in
mathematics. When |A)| <1 and |5 | <1, the
exploration trend occurs. Meanwhile, the wolves
are attacking the prey.

(2) Prey searching (exploration)

Grey wolves pursue and track their prey. In the
GWO algorithm, the phase of pursuing prey is
called exploration [44]. In such a process, the
parametersa, 3, and § have the duty of assisting.
If |/T | > 1, it indicates that grey wolves scatter
and seek prey in various directions. They
converge to assault [41] after discovering it. The
coefficient C offers an accidental weight for the
prey, whereas |5 | > 1 promotes exploration
during discovery. The natural obstacles to grey
wolf hunting are also modeled by ¢ [45].

4. Results and Discussion:

Tables 2 and 3 highlight the forecasts
performance of the two ANFIS models,
comprising the GA-ANFIS and GWO-ANFIS
methods, while applying the test data of building
cooling loads. The fact that each model computes
in less than 0.5 seconds demonstrates how
effectively they predict building cooling loads.
These tables’ performance findings show that the
GA-ANFIS model consistently outperforms the
GWO-ANFIS model regarding prediction
accuracy. In particular, the GA-ANFIS model's
accuracy was 0.98 in R? and 0.09 in RMSE,
compared to 0.95 and 0.15 for the GWO-ANFIS
model.

4.1. Accuracy Indicators

Statistical measurements such as the linear
correlation coefficient (R?) and root-mean-square
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error (RMSE) are employed to assess the
prediction effectiveness of ANFIS models. The
range for RMSE and R? values is between 0 and
1. Conversely, an ANFIS model indicates
improved performance with a higher R?> and a
lower RMSE. In this investigation, the
performance of ANFIS models was evaluated
utilizing the open-source WEKA data mining tool.
Throughout the training and assessment
processes, its parameters have defaulted to allow a
proper comparison of prediction performance
across ANFIS models. The correlation coefficient
and root means squared error (RMSE) are two
metrics (as described in Eqs. (16) and (17)) that
are used to assess prediction performance (R?).

2

U
R MSE = \/J Z [(Siobserved - Sipredlcled )] (16)
i=1

S )’
1 predicted 1 observed

R%=1-

(17)

Ml p e

Il
[iN

s,

c 2
i -S observed )

observed

Where Si observeds and Si anticipated representing the
green residential building's actual and projected
CL values, respectively. The variables U and
Sopserveq Tepresent the total data and the mean
of the actual CL amounts. Machine-learning
approaches were developed in the Weka software
environment using the enhanced data set. The
outcomes of this process are offered in the
following subsection.

4.2. Incorporated Optimizers and FIS

The GA and GWO were presented with the
calculated ANFIS's mathematical equation as the
primary problem. In this part, we will evaluate
how the size of the train and test datasets was
selected for the cross-validation process. The
cross-validation process involves selecting
random samples from the initial training and
validation sets (80%) to generate a new training
and validation set (20%) while leaving the testing
set (20%) intact for utilization in analyzing the
prediction performance of the various models.
Population sizes 50, 100, 150, 200, 250, 300, 350,
400, 450, and 500 are selected for the new
training and validation sets. Every network was
created between 1000 repeats to provide sufficient
possibility for minimizing the error. The described
technique yields ten convergence curves,
represented in Figure 3. The process of choosing
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the predictor variables and building the model
remains the same; however, the new train and test
sets are utilized separately to substitute the initial
train and test set. Figure 3 displays the prediction
effectiveness of models depending on MSE
amount employing training set with different
sample sizes. The figure indicates that the GA-
ANFIS technique results the most precise
outcomes due to its low MSE value.

Mesn squarsd seror

Herabons

(@)

Meaan sgquarad anol

Itarations
(b)
Figure 3: Variation of mean squared error versus
repetitions for (a) GAANFIS, (b) GWOANFIS

Tables 2 and 3 demonstrate the essential
metrics of the GA-ANFIS and GWO-ANFIS
models in forecasting CLs in buildings utilizing
train and test stages using ten population sizes.
Such models yielded consistent results, with R?
amounts varying from 0.95 ~0.98 and RMSE
amounts from 0.09 ~0.15. With R? of (0.98422
and 0.98339) and RMSE of (0.09056 and
0.09312) in the train and test phases, the optimal
swarm size for GA-ANFIS is 350. With a
population size of 400, the GWO-ANFIS
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approach seems to have the greatest R? (0.95148,
0.95191) and the smallest RMSE (0.15745,
0.15718) in the train and test stages. The findings
indicate that the GA-ANFIS approach performs
more effectively and makes more precise

Al in Sustainable Energy and Environment, Vol. 1, No. 2, 131-144

predictions when the R? and RMSE amounts are
greater.

Table 2. The outcomes of the GAANFIS algorithm with various population sizes

Swam Training dataset Testing dataset Scoring
. Total Score Rank
size
RMSE R’ RMSE R’ Training Testing
50 0.10826  0.97736 0.10987 0.9768 8 8 8 8 32 3
100 0.11283  0.97538 0.11422 0.9749 6 6 6 6 24 4
150 0.11449  0.97465 0.12023 0.97215 5 5 4 4 18 7
200 0.09728  0.98176 0.09832 0.98147 9 9 9 9 36 2
250 0.11486  0.97448 0.11353 0.97521 4 4 7 7 22 6
300 0.12214  0.97109 0.12777 0.96849 2 2 2 2 8 9
350 0.09056  0.98422 0.09312 0.98339 10 10 10 10 40 1
400 0.11112  0.97613 0.11565 0.97426 7 7 5 5 24 4
450 0.11618  0.97388 0.12077 0.9719 3 3 3 3 12 8
500 0.12778  0.96832 0.13472 0.96491 1 1 1 1 4 10
Table 3. The outcomes of the GWOANFIS algorithm with various population sizes
Swam Training dataset Testing dataset Scoring
. Total Score Rank
size
RMSE R’ RMSE R’ Training Testing

50 0.1721 0.94174 0.16386 0.94762 9 9 9 9 36 2
100 0.17457 0.94 0.16469 0.94708 7 7 8 8 30 3
150 0.17395  0.94044 0.17312 0.94135 8 8 5 5 26 4
200 0.17739  0.93798 0.16682 0.94566 5 5 6 6 22 6
250 0.22984  0.89344 0.21392 0.90893 1 1 1 1 4 10
300 0.18165  0.93487 0.19128 0.9279 4 4 3 3 14 7
350 0.22094  0.90198 0.21032 0.91211 2 2 2 2 8 9
400 0.15745  0.95148 0.15718 0.95191 10 10 10 10 40 1
450 0.17568  0.93921 0.16567 0.94642 6 6 7 7 26 4
500 0.18771  0.93028 0.18336 0.93395 3 3 4 4 14 7

The actual and expected building CLs scatter
plot generated from two ANFIS methods are
displayed in Figures 4 and 5. Such figures suggest
that the GA-ANFIS model had the most excellent
correlation between projected and actual cooling
load values. This is consistent with the model
performance outcomes in Tables 2 and 3.

In this regard, as shown by the training R?
values of 0.98422 and 0.95148the, GA-ANFIS
achieved more precise prediction for unseen
situations. The GA-mean ANFIS's absolute error
was lowest at RMSE of 0.09056 and 0.15745.
Additionally, the testing R? values (0.98339 and
0.95191) indicated greater consistency for the
GA-ANFIS products.
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Figure 5: The testing dataset accuracy of GAANFIS in the best-fit structure of optimization

The section evaluates the accuracy of the
created methods by comparing the expected and
absolute CL values. Two error criteria (MAE and
MSE) were determined to quantify the
performance error for the testing and training
specimens. Figures 6 and 7 depict a graphical
comparison of the CL's initial and expected
patterns (for the training dataset). As can be
noticed, the CL pattern was accurately
approximated by both models. The MAEs
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Figure 6: Minimum values of errors and
frequency in GAANFIS best fit structure

(0.067031 and 0.11596) and computed training
MSEs (0.0082062 and 0.025336 for the GA-
ANFIS and GWO-ANFIS, correspondingly)
demonstrate that the GA-ANFIS algorithm
developed a more accurate understanding of the
link between the CL and effective variables. The
acquired R? values (0.98422 and 0.95148), which
demonstrate a stronger correlation between the
GA-ANFIS training outputs and real CLs, could
be used to support the conclusion.
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Figure 6: Minimum values of errors and
frequency in GWOANTFIS best-fit structure
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5. Discussion

The ANFIS models have the benefit of being
able to learn and model effectively nonlinear and
complicated  relationships,  including the
prediction of a building's cooling load. The
ANFIS models possess a high potential for
generalization (e.g., CLs in buildings) after
learning the link between the inputs and the
outputs. Two ANFIS models may have been
trained and extensively assessed to estimate
building cooling loads at the beginning of the
design phase. It was verified that the GA-ANFIS
approach is the most proposed precise ANFIS
model. Between such two models, the GA-ANFIS
model had the best correlation between actual and
modeled values of CLs. The suggested ANFIS
models show excellent agreement with the entire
building energy simulation that is physics-based.
Additionally, the computing time for ANFIS
models is only a few seconds, whereas physics-
based energy simulations for entire buildings can
take hours or even a whole day to run.
Consequently, the model bagging ANFIS method
could be regarded as an alternate tool in the initial
stages of design to increase the buildings’ energy
efficiency via a more excellent knowledge of the
links between building energy performance and
building features.

6. Conclusions

Scientists and professionals are embracing
green building practices due to the popularity of
energy-efficient building designs. Predicting
building energy usage early in the design phase is
crucial to providing architects with different
design options. The research suggests a different
strategy relying on ANFIS methods to predict
building cooling loads. The forecast performance
of ensemble and single ANFIS methods was
generated and evaluated in this study using a
dataset of 243 buildings. The analysis outcomes
demonstrate that the GA model was the optimum
ANFIS model. Significantly, the GA-ANFIS
model had the greatest R amount of 0.98 and the
lowest RMSE amount of 0.09 among the two
models examined in this research. The GWO-
ANFIS approach achieved R? amounts of 0.95
and RMSE amounts of 0.15, suggesting that GA-
ANFIS provides superior performance. The
research explored using ML models for estimating
building cooling loads as one of its contributions.
The outcomes of this research offer designers a
different approach to gaining accessibility to links
between building cooling loads and building

Al in Sustainable Energy and Environment, Vol. 1, No. 2, 131-144

attributes to improve building energy efficiency.
Future research might broaden the application of
ANFIS models to include calibrating a building
energy model to retrofit existing structures. Their
parameter values determine the performance of
ANFIS models. Determining the ideal values for
these variables is a demanding and potential area
of future researches that might modify the
predictive accuracy of the ANFIS model.
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